
2020

 March 2020

 #131
A Professional Journal Exclusively for the Heath/Zenith Z-100 Computer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Z-100 LifeLine Web Site: https://z100lifeline.swvagts.com

HOWGOZIT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ZBASIC CAKE.BAS Program . . . . . . . . . . . . . . . . . . . . . . . . 2

DL4YHF2 Frequency Counter & Crystal Tester  . . . . . . . . . . . . . . 3

Recent Repair Log . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Z-100 MFM Hard Drives . . . . . . . . . . . . . . . . . . . . . . . . . 8

DL4YHF2 Frequency Counter & Crystal Tester . . . . . . . . . . . . . Insert

S-100 Buss Pin Definitions . . . . . . . . . . . . . . . . . . . . Insert

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

HOWGOZIT

By now you should have noticed that WE HAVE a new
Z-100 LifeLine Website and Email address! Please
make note of these.

The last issue, #130 was my 100th issue of the Z-
100 LifeLine as Editor and Publisher!!! And as
part of the celebration, I attached a new ZBASIC
program, CAKE.BAS. Hopefully, you were curious
enough to key it in and run it, but if not, it was
a side view of a simple graphic cake with the
message “HAPPY BIRTHDAY, Z-100 LifeLine”. However,
the fun part that you could not make out unless
you at least read the remarks in the code was the
rockets and fireworks launching from the top of
the cake (actually from the top of some of the
letters)!

If you did try to key it in, because I could not
find a font that did not use proportional spacing,
the number of spaces listed in the program were
hard to figure out, and most probably caused you
some frustration. I am sorry about that, but I
hope the result was worth it and that you enjoyed
the program. Later, in this issue, I’ll describe
some of the more interesting aspects of the
program.

With the last issue I also introduced you to a
source of inexpensive test equipment - from Ebay
and China. For about $15-25.00, you can now buy
test equipment of all kinds that would make an
excellent gift for some child interested in a
career in electronics.

The last issue described a pair of interesting
Transistor Testers. This issue introduces the
DL4YHF2 Frequency Counter and Crystal Tester. I’ve
also added a new page to the Z-100 LifeLine
website, Inexpensive Test Equipment, that will
contain all the equipment that I have reviewed in
the next few issues.

One word of caution. I’ve now constructed several
of these kits and you must remember that these are
simple kits with amazing capabilities built in.
However, you also get what you pay for - that is,
these are not designed with a lot of care to part
tolerances and have no additional delicate
corrective circuitry. So, not all of these will
work as they should.

Some of the kits I constructed came with a bad or
incorrect part. So always test the parts that you
can BEFORE installation.

Some completed kits did not have the full
frequency range specified. One Transistor Tester,
in spite of all I did and checks that I made, just
would not work.

Nevertheless, those that did work are utterly
amazing in what they can do in such a small
package. My recommendation: At prices this low,
buy the equipment in pairs. Odds are that at least
one will work. Also, you have spare parts, if you
need them, which also helps in troubleshooting a
bad unit. At these prices, it is best for a little
insurance.

Finally, let me know if you have any difficulty.
I may already have a spare part that you can use,
or I may have already found a solution to your

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 1 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

problem. I would also like your success stories,
if you have any. Thanks.

Now let’s introduce the next find...

DL4YHF2 Frequency Counter
& Crystal Tester

The DL4YHF Frequency Counter & Crystal Tester is
sold as a kit and requires some experience in
soldering skills. However, I have assembled the
kit, created a schematic, and included everything
you need in this manual. This manual can also be
found on my website, on the Test Equipment page.

This is a simple five-digit frequency counter kit
based on a PIC single chip 16F628 micro-
controller, with a crystal oscillator measurement
function, programmable frequency setting, and LED
digital display. It is most commonly used to
measure the oscillation frequency of a crystal or
crystal oscillator.

Part/Model Number: YS9283, B8O8, and a few
others, but it is actually a generic, unbranded
circuit board based on a circuit developed by
Wolfgang Buscher, DL4YHF. I have also added the
ability to test the four-pin crystal oscillator,
so we will call the modified device the DL4YHF2
Frequency Counter and Crystal Tester.

All the parts are through hole components, so the
kit is easy, if you have basic soldering skills,
and it is simple to operate. You will need to
locate or purchase additional parts to add my
crystal oscillator check function, but these are
described later in the manual.

So, check out this issue’s insert, DL4YHF2
Frequency Counter & Crystal Tester Manual.

ZBASIC CAKE.BAS Program

The ZBASIC CAKE.BAS program was mostly a quick
program to make issue #130 a bit more special. It
was actually my wife’s idea. However, it felt good
to get back into ZBASIC and I’ve always been
impressed with the graphics capability of such an
early application. Perhaps it is nothing compared
to today’s standards, but in 1982?

If you took the time to play with it, I hope you
found it interesting. If you no longer have ZBASIC
capability, I understand, but hope that you will
follow along with my explanation and reasoning.
I’m sure you can probably find better ways to
accomplish the same graphics affects, but that is
one of the things that I like about BASIC - there
are usually several ways to accomplish something,
and usually there are tradeoffs on which way you
may choose to go.

So let’s discuss some of the more interesting
aspects of this program.

First off, I wish everyone would include a Title
block in their program. In addition to the Title,
it should include the author & perhaps contact
info & the date, but most importantly, what
computer and version of the programming language
is being used. BASIC programs especially seem to
lack this important piece of information, and
there are so many different versions, most of
which have certain programming quirks that a
person must figure out. Will it run with BASIC-80,
QBASIC, GWBASIC, BASIC-80, etc.?

This CAKE.BAS program uses the H-19 ESCape codes
and graphics characters, so it may work on the H-8
or H-88/89/90 using BASIC-80 or something similar.
It will NOT work with anything later or some form
of the PC-clone BASICs.

Following the Title block, I like to set up the
various equates to use the ESCape codes that I’ll
be using. So, generally starting at line 100, I
like to define the ESCape character, E$, and then
the ESCape codes to turn ON/OFF Reverse Video,
Graphics Mode, sometimes even Colors to be used.
I also like to initialize the ZBASIC RANDOMIZE
function, in this case with line 130.

Looking in the ZBASIC manual, I could find no
mention of RANDOMIZE TIME/DATE. So, I’m not sure
where I picked up this statement. The reference
manual only talks about the <expression> which is
used as a random number seed value, and the
examples simply show a number. But if you use the
same number each time, the random number generated
has the same number every time, and you have to
remember to give a different number each time the
program is run.

Just using RANDOMIZE TIME will not work; it
generally gives the error, “Overflow in 130”. For
example, when I used the ZBASIC command PRINT
TIME, DATE, and TIME/DATE, it gave:

61279 16 3829.938

The Random Number Seed is limited to -32768 to
+32768, hence the overflow error.

If you have not already done so, I recommend
adding a note to the RANDOMIZE Statement of the
Reference Guide, page 10.143 of the ZBASIC manual,
“For a suitable Random Number Generator, use the
statement ‘RANDOMIZE TIME/DATE’”.

Next, the COLOR statement is obvious; it sets the
screen colors. COLOR 1,3 sets Blue on a Cyan
background.

But the LINE statement of line 1010, could use
some explanation. The LINE statement takes the
form:

LINE [(X1,Y1)]-(X2,Y2) [,[attribute]][,b[f]]
Where:
 X1 and X2 are a column position
 Y1 and Y2 are a row position
 Attribute is a screen color
 B[f] is a fill background color

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 2 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It permits the drawing of lines in absolute and
relative locations on the screen.

LINE is the most powerful of the graphics
statements. It is so important to my program that
I’ll repeat the reference guide, page 10.90, here
verbatim, with a few of my comments interspersed.

It allows a group of pixels to be controlled with
a single statement.

A Pixel is the smallest point that can be plotted
on the screen. If you get up close and personal
with your Z-100 screen or display, you can make
out the distinct dots of light that make up a
character. Each of these dots of light is a pixel.
The ZBASIC screen can display 25 lines of
characters, each 80 characters long. This gives us
a screen 640 (80x8) pixels long x 225 (25x9)
pixels tall.

The simplest form of LINE is:
LINE - (X2,Y2)

This will draw from the last point to the point
(X2,Y2) in the foreground attribute.

We can include a starting point also:
LINE (0,0) - 639,224)

This will draw a diagonal line down the screen.

The statement:
LINE (0,100)-(639,100)

will draw a horizontal bar across the screen, 100
pixels down from the top line of pixels (about
mid-screen).

We can append a color argument to draw the line in
green, which is color two:

LINE (10,10)-(20,20),2

If we used a RND Function, we could make the line
appear anywhere on the screen in any random color.

The RND Function takes the form RND(X) and returns
a random number between 0 and 1. The same sequence
of random numbers is generated each time the
program is run, unless the random number generator
is reseeded using the RANDOMIZE statement
discussed above.

However, X<0 always restarts the same sequence for
any given X. X=0 repeats the last number
generated. X>0 or X omitted generates the next
random number in the sequence.

For example, the statement:
PRINT INT(RND*100)

will print a number between 0 and 100. The INT
function is used to restrict us to whole numbers
(drops any decimal amount).

So, getting back to displaying our random lines
and colors, we can use the program:

10 CLS
20 LINE -(RND*639,RND*224),RND*7
30 GOTO 20

to draw lines forever on the screen using a random
color for each.

The final optional argument to LINE is “,b” for a
box, or “,bf” for a filled box. The syntax
indicates that we can leave out the attribute
argument and include the final argument as
follows:

LINE (0,0)-(100,100),,b

will draw a box in the foreground attribute.

Or:
LINE (0,0)-(200,200),2,bf

will draw a filled box with color attribute 2
(Green).

The “,b” tells BASIC to draw a rectangle with the
points (X1,Y1) and (X2,Y2) as opposite corners.
This avoids giving the four separate LINE
commands:

LINE (X1,Y1)-(X2,Y2)
LINE (X1,Y1)-(X1,Y2)
LINE (X2,Y1)-(X2,Y2)
LINE (X1,Y2)-(X2,Y2)

which perform the equivalent function.

The “,bf” means draw the same rectangle as “,b”,
but also fill in the interior of the box with the
selected color attribute.

When out of range coordinates are given in the
LINE command, the coordinate which is out of range
is given the closest legal value. In other words,
negative values become zero, Y values greater than
224 become 224 and X values greater than 639
become 639.

So, in our Cake program, the statement:
1010 LINE (30,120)-(620,207),3,BF

draws our cake outline and fills in with Cyan.

To draw in our Cake message, we have the 2000
series of statements. The color of choice is set
by COLOR 1,3, which is Blue on Cyan background.

The LOCATE statement takes the form:
LOCATE [row],[col][,[cursor]]

Where:
 Row is the screen line number between 1 and

25 (not to be confused with pixel locations used
elsewhere)

 Col is the screen column number between 1
and 80.

 Cursor is set to indicate if it is visible
or not. Zero is OFF, non-zero is ON.

The LOCATE statement moves the cursor to the
desired screen character position. Subsequent
PRINT statements begin placing characters at this

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 3 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

position. Optionally, it may be used to turn the
cursor ON or OFF.

So, our 2000 series statements place the cursor at
the desired location for each character to be
printed on the screen. The F$ puts us in Z-100
Graphics mode. The series of graphics letters is
used to print our message in characters 3 lines
high across the front of the cake.

When we are done, line #2075 is used to locate to
Home, turn OFF graphics and reset our screen color
to the default white on black background.

Now, it gets more interesting.

We want to fire rockets that explode in the air in
the form of fireworks! At a fireworks display, we
generally see a rocket fire into the air, it
explodes with a POP, and then the remnants drift
down until they burn out. The series of statements
beginning at line number 2100 sets us up for the
first.

GOSUB 6000 is just a simple routine to set a
random color for the rocket. You may notice that
I had to add +1 to the equation. It seems that
when INT drops the decimal, the number never gets
to show 7 (white), and I did not want to show
black on our black background. The simple fix was
just to add one.

GOSUB 5000 was just to place a time delay for the
rocket trail, the explosion, and the falling
embers.

Another consideration was that we could use a
random generated number and then an IF...THEN GOTO
statement to fire each rocket from a random
location on the cake. However, I found that when
I was done, there was enough randomness that I
didn’t need to make it any more complicated.

So I chose to fire the rockets from any letter
that may look like a rocket launcher - ‘Y’, ‘H’,
and ‘I’.

Two more comments of note, each rocket must be
fired twice, once with the random color, and again
at the default background color. This erases the
track of the rocket from the screen.

We must also note the location at the end of the
rocket’s track. We also need to convert the screen
position numbers! The LINE command uses screen
PIXEL positions, while the LOCATE command uses
screen CHARACTER positions. If you choose the
rocket positions correctly (divisible by 9 and 8),
the numbers are converted in line number 7010 to
give you whole numbers for the explosion LOCATE
command. However, you could easily just use INT to
drop the decimal part of the location.

The last interesting element of the program is the
7000 series of statements to create the
explosions.

As we did with the rocket trails, we need to draw
the initial explosion, erase it with the next
level of the explosion, erase that with the next
level of the explosion, etc., until the last
remnants of the explosion are deleted, for 5
levels. I liked the final affect. I’m sure there
may be other ways to do this but this worked to my
satisfaction. Adjust the time delay loop to adjust
the timing if you wish.

That’s about it. I hope you enjoyed the program.
I found I enjoyed dusting off ZBASIC for this
quick effort. Happy 100th issue to me.

Recent Repair Log

Hard Drive Will NOT Boot

I’ve been suffering with a hard drive on my test
bed computer that would not boot when it was cold.
I wouldn’t think too much of it, because after 10-
15 minutes it would decide to work and I’d have no
issues after that. I was always on another mission
at the time, so it was usually forgotten until the
next cold morning.

Oh, I would do the usual quick troubleshooting,
changing the controller board and the data
separator card, and even the cables, to no avail.
So, I just figured it was the drive, or perhaps
the motherboard.

Well, that drive finally died, with a terrible
grinding sound, but then I found that the
replacement drive was suffering from the same
issue! What were the odds?

Now seriously doubting the cold drive theory, I
finally set some time aside to troubleshoot the
issue.

Sure enough, changing the motherboard solved the
problem, but this was one of my favorite
motherboards, with 256K RAM chips for 768k, 24MHz
crystal, no other issues. I’d been using it for
years. I could not stand the thought of retiring
it.

Interestingly, the computer would still boot to
the floppy drive and IDE controller. So I figured
that it had to be something S-100 Buss related,
that didn’t work for booting to a hard drive, but
would still do everything else. How many signals
worked only for the hard drive?

Well, it turns out, quite a few. The following
list shows the signals used by the hard drive
controller, but not the floppy controller:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 4 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S-100
Pin# Signal: ICs Used:
 3 XRDY U177, U206, U205
 14 DMA3* U???
 15 A18 U163, U213
 16 A16 U163, U213
 17 A17 U163, U213
 18 SDSB* U182, U227
 19 CSDB* U182, U180
 22 ADSB* U182, U196, U197, U213
 23 DODSB* U182, U198
 26 pHLDA U180
 32 A15 U162, U196
 33 A12 U162, U196
 34 A9 U162, U196
 37 A10 U162, U196
 44 sM1 U227
 47 sMEMR U227, U214, U195
 48 sHLTA U227
 55 DMA0* U???
 56 DMA1* U???
 57 DMA2* U???
 58 sXTRQ* U227
 59 A19 U163, U213
 60 SIXTN* U182
 61 A20 U163, U213
 62 A21 U163, U213
 63 A22 U163, U213
 64 A23 U163, U213, U215
 73 INT* U177, U202, U208, U158
 74 HOLD* U185, U186
 84 A8 U162, U196
 85 A13 U162, U196
 86 A14 U162, U196
 87 A11 U162, U196
 96 sINTA U227
 97 sWO* U227, U214

By the way, this logic does not work for the
floppy controller, as all the lines used for the
floppy controller are also used by the hard drive
controller - except the DC power lines. The hard
drive controller and data separator card have
their own power lines from the power supply.

I set about swapping out chips down the list from
another good board, and quickly found that U163
was causing another problem.

The new chip in U163 was causing only a hyphen to
be displayed near home, and not a hand prompt. I
thought it strange, but kept changing it out until
I found one that worked. When I got the hand
prompt, the hard drive also sometimes booted,
sometimes not. It was nothing conclusive, but it
was strange. I completed the entire list with no
other problems, then went back to U163. I checked
all the pins on the IC and in the socket and they
were soldered fine on the solder side of the
board.

Well, just a short time later, the drive would no
longer Boot at all. I finally decided to try
another hard drive, and it worked flawlessly!
Apparently, it was my hard drive failing all
along.

With all the work I did trying to troubleshoot
this problem, I created another troubleshooting
aid - the S-100 Buss Pin Definitions sheet
attached to this issue. It provides a list of all
the S-100 Buss pins, their purpose, what ICs that
they are attached to in their respective
schematic sheet, and the page number where that
signal is discussed in the Technical Manual.

Computer Will Not Display Hand Prompt

Actually, the computer gave a continuous tone from
the speaker and no video at all.

You may recall that our Z-100 has a set routine to
power up, and one of the first steps is to check
the first 64K of motherboard RAM to ensure there
is enough RAM to test circuits and display status
messages. If it can’t get far enough on its power
up checks, instead of video, it must rely on beeps
or tones to notify the user of a problem. Such was
the case here.

While there may be other problems, the first thing
to do is swap planes of RAM, if you have more than
one plane. Lacking that, you need to find spare
RAM to substitute RAM chips until you can find the
chip that has gone bad.

Depending upon the bad chip, other symptoms may
include no beeps, one beep, occasionally even a
second, but still no video.

In my case, I found six bad chips on the
motherboard, all Texas Instrument (TI) chips, five
TMS4164-15NL, with the lot number P8214 and one
TMS4164-Z20NL, with the lot number P8218.

After much research looking for more information,
I also found a blurb in the installation of PC-
Emulator boards that I had written back in 1996,
that if you cannot get a short beep on power up,
you may also try removing all S-100 boards and
checking the following ICs on the motherboard:

U164 - 74LS240
U211 - 8088 or 8088-2
U219 - 74LS74
U221 - 74LS32

Completely Dead Motherboard

This motherboard was saved until last. It was
completely dead, no beeps, nor video.

As with the last board, I tried changing the chips
listed above. No affect. The only recourse was to
begin swapping out chips. I began with the big
chips; ZROM, CPU chips, etc., but finally began
changing out whole groups of 4-5 chips at a time,
beginning from the center of the motherboard, all
around the video board connectors, progressing to
the front of the board, then working clockwise,
through the RAM, toward the back on the left edge,
then down the right edge from the front.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 5 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

As luck would have it, I found U241, a 74LS244,
bad! Ah, Vagts luck at work. So, note to self and
to all of you - add the U241 chip to change, if no
beeps or video.

Well, while I was getting sound, it was a short
beep, but still no video - still had issues. But
now it sounded more like a RAM problem. So, while
we are here, let’s discuss this a bit next...

Power Up Beeps and Clicks or
Life Before the Second Beep

One of the least understood circumstances,
especially for the new Z-100 owner, is the ‘no
video’ complaint. Let’s try to make some sense of
this, all too common problem.

The Z-100 has a lot of diagnostics built into the
machine, both in hardware and software. The
software is quite detailed, in the form of disk-
based diagnostics, but in order to use it, you
must be able to boot up to a disk.

The built-in ROM-based diagnostics are more
critical, and from the start, Heath/Zenith tried
to have you covered.

For a full explanation of what the ROM is doing
during power up, please refer to Paul Herman’s “Z-
100 LifeLine”, issue #2, “Exploring the ROM”.

For our purposes, I’ll only touch on the high
points.

The following is a listing of the initial steps
made within the monitor ROMs version 2.x. I don’t
know if changes were made in version 3.x.

* Upon a Reset or Power Up, the 8085 CPU
begins to execute instructions and provides the
first Beep.

* The computer then swaps processors to the
8088 CPU which begins executing its instructions
and jumps to the monitor ROM entry point. The ROM
code is mapped to the top of the first megabyte of
RAM memory.

* If the 8088 passes its internal tests, the
program checks to see if the MTR-100 data segment
has already been initialized by looking for a ROM
version number. If the number is found, this was
a Reset and the next steps are skipped:

- A check is made of the monitor ROM
checksum.

- The parity logic is checked.

- The first 64k RAM is checked.

Note: This is the RAM located in the first
column, U101 through U109, with U101 being the
parity chip. The second bank is U117 to U125, with
U117 the parity chip. The third bank is U147 to

U155, with U147 the parity chip.

- A quick check is also made of the second
64k RAM (if found).

* If any errors were found in the above steps,
they are addressed now:

- If an error was found in the first bank of
64k RAM, there is no RAM with which to process and
display the error. Processing simply ceases after
the first Beep, and no video is displayed.

- If the first bank of 64k RAM passed the
checks, the errors are displayed as follows:

“ERROR IN CPU. CHIP U211"
“ERROR IN ROM. CHIP U190"
“ERROR IN PARITY. CHIP U153"
“ERROR IN FIRST BANK PARITY RAM. CHIP U101"
“SECOND BANK RAM ERROR. CHIP Uxxx”

* The program jumps to the command processor,

which Beeps success.

In summary, the first beep was generated by the
8085 processor right at the start - we are off and
running. This second beep indicates that all the
start-up diagnostics and initialization were done
successfully.

As I understand it, the amount of testing done by
the ROM chip was essentially the same for all
ZROMs earlier than ZROM v4.0, it tested only the
first column of RAM on the motherboard (more on
this in a second), whether it contained 64k RAM
chips or 256k RAM chips and did a quick check of
the second column of RAM, if found, on the
motherboard. To test the other RAM chips, you
either had to boot up and use the disk-based
diagnostics, or you had to physically swap the RAM
chips between the first column and the third
column and restart.

The reason for testing the first bank of 64k RAM,
or the first 3 banks (192k) of 256k RAM, was to be
able to notify the user of a RAM problem before
boot up as this minimal RAM would be needed to
display messages relating to boot problems, and
the limited ROM size meant to keep things minimal.
ROM size increased with ZROM 3.x to a 256k ROM,
but as I recall, no change was made to the RAM
test.

Well, my recent testing actually shows that with
any ROM v2.x, it is actually the first TWO (2)
columns of RAM tested on the motherboard at power
up! Any bad RAM in the first column would cause a
short beep and no video. However, if there were
any bad RAM in the second bank (middle column),
the bad RAM chip was actually displayed on the
screen - by chip number!

I don’t recall ever having read that in the
manual. So, for those who are still using ROM

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 6 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

v2.x, to troubleshoot a beep, but no video,
just try swapping out the RAM chips between the
first and third column on the motherboard.

I consider ZROM v4.x one of John Beyers’ greatest
accomplishments - a major enhancement to the
Z-100's programming ability. One benefit of the
larger ROM, was that John could now check all the
RAM on power up, not the extensive testing of the
disk-based diagnostics, but enough for basic
needs.

The first column of RAM on the motherboard was
still special, and John developed a means to
report bad chips by using a long beep and a number
of clicks, repeated indefinitely until the
computer was turned off. So, if an issue was found
in the first column RAM, there would be a long
beep, and then a number of clicks (1-8) to
indicate which RAM chip was bad; one click for
chip U109, to eight clicks for U102 (from the rear
to the front).

Note: In addition to the above memory issues, a
long beep and a click could indicate an issue with
resistor pack RP101 (a flat back DIP chip that
looks like an IC), or with a PAL IC at U110, part
#444-126 on 5 MHz 64k RAM (192k total) on the
motherboard, part #444-367 on 8MHz, 256k RAM (768k
total) on the motherboard, OR: U111, U126, U127,
U128, U132, U133, U146, U151, U153, U155, or their
respective sockets.

Once the first column was complete (1 bank for 64k
chips, 3 banks for 256k chips), then the memory
was there to display messages for the other two
columns and a message would be displayed for any
other bad chips, for example, ‘SECOND BANK RAM
ERROR. CHIP U145'.

Keep in mind that for these purposes, each column
of RAM on the motherboard, is one bank for this
memory test, not to be confused with the 12 banks
of RAM tested in the disk-based diagnostics, if
256k chips are installed.

I hope you find this helpful. Two more notes
before closing this memory topic.

One of the first errors that you may get while
performing the disk-based diagnostics RAM tests is
“Memory Parity Error”, and a list of suspect
chips. The list does NOT include any suspect RAM
chips. After noting the suspect chips, always
press the space bar to continue the tests. The
full memory test may actually reveal the bad RAM
chip(s) by number, and replacement may also fix
the parity error.

When running the disk-based diagnostics, ALWAYS
check that the configuration is correct before
running the RAM diagnostics. If it is not correct,
you will get all kinds of errors.

What banks to check?

If using 64k RAM chips, the test should be
configured to test banks 0, 1, and 2 (192k RAM on
the motherboard) and any additional banks required
for the Z205 RAM cards.

If using 256k RAM chips, the test should be
configured to test banks 0 through 11 (768k RAM on
the motherboard).

The video RAM are in banks 12, 13, and 14, if you
are using all the video RAM.

Hard Drive “Track 0 Contains Bad Sectors”

I had gotten a donated Atasi model 3046, 39Mb MFM
hard drive from a friend and just could not wait
to see if it had survived all these years...

I checked that it had the terminal resistor, but
was not sure of the jumper settings for drive unit
0:. I checked the jumpers from the 34-pin
connector, but it had three jumpers installed -
for DS1, DS2, and DS3!

Note: If you can see the traces on the circuit
board or have access to an ohmmeter, you can
locate the Drive Select jumpers. One side of each
of the Drive Select jumpers will be connected to
the 34-pin connector as:

Pin 32 to DS3
Pin 30 to DS2
Pin 28 to DS1
Pin 26 to DS0

I removed all the jumpers and set the drive for
what should have been DS0. After booting to a
floppy with Z-DOS v3, I ran ASGNPART 0:.

Note: This drive has two drive LEDs. The right
LED came on whenever the drive was ready (on speed
and ready for a read/write command). The left LED
apparently is the normal drive LED.

The drive was recognized as unit 0: because the
left drive LED lighted, but I received the error
“Read error on drive” and no partitions were
shown.

OK, this drive appeared to need a PREP. I was
running Z-DOS v3 at the time, so I tried that
first. The drive specifications for the Atasi 3046
were:

7 heads; 39 Megabytes
285h cylinders
286h reduced write cylinder
140h pre-comp cylinder
1 step rate
28Ah parking cylinder

To use a drive larger than 32 Mb, you need to use
PREP with the /k switch, which changes the normal
512-byte sector size to a 1024-byte sector size,
and would then allow you to use up to 64Mb.

However, I did not want to use the /k switch, for
a couple of reasons:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 7 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- I did not want the extra size because I have
no use for it. A 30Mb drive is more than adequate
for my use, even with multiple operating systems.

- I was not certain that the Gemini PC-emulator
system would care for the 1024-byte sector size,
though I think that it does.

- I was even more doubtful that CP/M operating
systems would like the 1024-byte sector size.

Anyway, I would only use 5 heads, which would
provide less than 30Mb. You could also reduce the
number of cylinders to accomplish the same thing.

Running PREP from the floppy drive, the software
reported “initializing the disk”, but then
promptly also reported “Track 0 contains bad
sectors!”

I should have run DETECT at this time and probably
would have been spared the following long waste of
time, but truthfully, I did not think of it.

Anyway, I remembered that Z-DOS v4 PREP is not
limited by the Track zero problems of the earlier
versions because PREP will work around the bad
sectors until it can find a clean, working string
of sectors needed to act as Track 0.

Sure enough, PREP /Q/T1 (I did not want to wait
around for 7 test passes) seemed to work great:

“Formatting Drive...” completed normally
“Media Test in Progress, pass 1, writing

cylinder xxxx”, where xxxx is the cylinder number.

Without stretching this all out word for word, all
appeared normal. I got two bad sectors; 5680 of
cylinder 63, and 11380 of cylinder 126, and the
testing continued... at a crawl...

Keep in mind that 285h cylinders equates to 645
cylinders in decimal and while PREP is programmed
with hexadecimal numbers, its progress report is
in decimal...

Reached 110 cylinders in two hours... OK.
Reached 248 in 8 hours; 512 in 28 hours; 600 in 36
hours... What the hey?

I woke up the morning of the second day to find
the test pass must have completed, but the final
format shutdown because the maximum bad sector
count was exceeded!!

This time I remembered to try DETECT - and bad
sectors were scrolling off the screen, skipping
every 1 to even as far as 18 good sectors in
between. Using another jumper on the drive, which
I think switched the drive from physical to
logical sectors, DETECT showed bad sectors
reported under all heads.

Figuring that the attached drive controller was
bad, I scrapped the drive. Sure enough, the
platters inside were spotless. What a shame.

Let’s talk about MFM drives a bit:

Z-100 MFM Hard Drives

Since the first 5, 10, or 12Mb hard drives (called
Winchester Drives by Zenith) were placed in the
Z-100 in the mid-80s, there have been several more
advanced types developed - MFM, RLL, SCSI, IDE and
others. The drives usually found in the Z-100 were
the first type - MFM - and the subject of this
article.

Another drive type - SCSI - with considerably
larger capacities, became available for the Z-100
in the late 80s with a SCSI Controller marketed by
C.D.R. Paul Herman, editor and publisher of the
“Z-100 LifeLine” at the time tried to get a
special order of boards from C.D.R. adapted
specifically for the Z-100. However, it soon
became evident to Paul, and several volunteers
working as his staff, that they needed to develop
their own controller, and the new Z-100 LifeLine
SCSI/EEPROM board was created.

As the MFM and newer SCSI systems became more
scarce, attention turned to the newer IDE
technology and another group of volunteers, John
Beyers, Charles Hett, and I researched and
developed the new Z-100 LifeLine IDE NvsRAM board,
which finally shipped in late 2008.

You can find additional information on these newer
systems elsewhere on the website. This article
will concentrate on the use of the initial
Winchester hard drive.

The Heathkit/Zenith MFM hard drive installation
was comprised of a Z-217 Winchester Controller
Card in the card cage, a separate, unique Data
Separator Board that was normally mounted near or
over the hard drive and the MFM hard drive itself.

Note: For full procedures on installing an MFM
Hard Drive in the Z-100 series computer, please
see Issue #59, September - October 1998 of the
“Z-100 LifeLine” or the Z-100 MFM Hard Drive
article on the Repair and Modification page of the
website.

Preparing the Hard Drive

IMPORTANT: Early MFM hard drives are fragile and
can be damaged easily. In all hard drives, while
the drive’s platter is spinning, the read/write
heads float on a very thin layer of air, separ-
ating the heads from the platter’s surface.
However, the read/write heads on these early
drives came to rest on the surface of the disk
platter when rotation stopped. Any bumping,
knocking, or dropping may cause the heads to bang
against the surface of the platter. A severe bump,
especially while the platter is spinning, could
actually damage or gouge out a small area in the
platter and cause a “crash”, where an important
portion of a program is unreadable and lost
because the disk surface was damaged. Further, the
read/write head may also be damaged.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 8 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For early hard drives, it is CRITICAL to run a
disk utility that parks the heads in an unused
portion of the disk - a storage or parking area -
before the heads come to rest. Such a utility is
SHIP, an external command packaged in CP/M and MS-
DOS operating systems.

Later MFM drives had an auto-park feature that
placed the heads down after the last usable sector
of the drive, in an unused area. But even then,
the heads could be damaged from a sudden drop of
the drive.

MFM drives are recognized by their two ribbon
cable card edge connectors, one with 34 conductors
and the other with 20 conductors.

RLL drives also have these but the drive model
number includes an R. For example, an ST-138 is an
MFM drive, while an ST-138R is an RLL drive, with
different formatting, capacities, and controller
boards.

ESDI drives also have similar cable connections,
but cannot be used.

MFM drives are becoming available from Ebay and
the used market, sometimes at ridiculous prices
and there is no guarantee that any of these will
work. But let’s assume that you find one with
possibilities and want to try it. What is
involved?

CAUTION: You cannot just slap an MFM drive from
another computer into your Z-100 and expect it to
work, without completely reformatting the drive.
It will require low level formatting using the
Z-100 PREP command, partitioning using the PART
command, and a high level formatting of each
partition using the FORMAT command. These commands
are unique to the Heath/Zenith CP/M and MS-DOS
(now referred to as Z-DOS) operating systems.

There are numerous manufacturers of MFM drives,
each with different sets of programming plugs,
jumpers, and terminating resistors. If you have a
specific brand that you can’t figure out, try
emailing me at the “Z-100 LifeLine”. I may have
the info needed, or at least some suggestions.

As I mentioned earlier, please refer to Issue #59
for the full procedures for installing a hard
drive in the Z-100. However, there are a few
specific reminders:

* Try to install the new drive alone and boot
to a floppy to run the Winchester Disk Utilities.
It can be run from another hard drive, but you
would hate to accidently PREP the wrong drive!

* If the new drive is installed alone, insure
the terminating resistor pack is installed. If it
is the second drive, only install the terminator
resistor on the hard drive installed last on the
34-pin connector ribbon.

* Double check that the ribbon cables are
installed per the directions in Issue #59. Insure
all connectors are fully seated and that pin one
of each ribbon connector (the ribbon cable may
also have a red edge) is at the correct end of the
connectors on the drive, controller, and data
separator.

* Before running PREP on a hard drive, you
must install the Format Enable Jumper on the Z-217
Controller Card.

* Check for a programming plug on the new
drive before installation and make a note of the
position of any jumpers. Try this setting first
and if unsuccessful, try the other positions
before giving up.

Hint: If you can see the traces on the circuit
board or have access to an ohmmeter, you can
locate the Drive Select jumpers. One side of each
of the Drive Select jumpers will be connected to
the 34-pin connector. The one we are interested in
is DS0, connected to pin 26 on the 34-pin
connector.

Hint: Before changing any positions on the
programming plug, install the hard drive
temporarily, boot up the computer, and run
ASGNPART 0:. If the drive is already setup as
drive 0: the drive LED should light. If it does
not, check ASGNPART 1: and even 2: and 3: before
giving up. If the LED will not light in any
position, check the cables for an improper
connection and finally try a different position on
the programming plug.

Note: If partition info is displayed after
running ASGNPART, do not proceed with PREP until
you have tried other options. For example:

- Try running ASGNPART X:(Partition name) E:,
where X: is the drive unit number. Then do a
directory listing on E:.

- Try running DETECT or VERIFY to see how many
bad sectors are found.

- Try reformatting the partition with FORMAT
to isolate those bad sectors.

The PREP and PART utilities were available on a
special disk entitled ‘Winchester Utilities Disk’,
distributed separately from the earlier MS-DOS
versions. The disk and instructions are available
from the Z-100 LifeLine Library.

CAUTION: Using PREP is the last resort. It will
destroy all the files that may exist on the hard
drive. If the disk is from another Z-100, you may
need to use PREP only if you consistently
encounter an unreasonable number of disk access
errors. Do NOT use PREP until you have backed up
all important files you wish to keep to floppy
disks.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 9 -



Z-100 LifeLine March 2020 #131
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PREP has been updated by John Beyers in the
Z-100's Z-DOS v4 that allows it to be much more
flexible in its operation - another reason to
upgrade.

All versions of the PREP utility enable you to:

- Initialize the surface of the hard disk.
- Test the data retention capabilities of the

hard disk.
- Isolate questionable disk sectors.
- Divide the surface of the hard disk into 2

partitions (Z-DOS and CP/M).

PREP takes a long time to run. For small capacity
drives, expect it to take about 2 hours for every
10 megabytes in hard drive size. For larger
drives, it may take many times that. It runs seven
surface passes. However, with the version 4 PREP,
you can set the number of passes to make, and it
provides a status line to measure progress.

If the hard disk does not contain initialization
information (from a prior PREP operation), PREP
will prompt you to enter characteristics (in hex)
in order to identify the type of hard drive that
is being installed in the computer.

While Issue #59 has a list of common drives that
were used in the Z-100, I have updated this
information for many more manufacturers. Please
see the Z-100 MFM Hard Drive article in the list
of Repair articles on the Repair and Modification
Page of the ‘Z-100 LifeLine’ website.

Note: Several of the drives are too large for
normal use in the Z-100. Early hard drives and
Z-DOS versions in the Z-100 were limited to 32Mb.
Later, with the addition of the PREP /k switch
(which uses 1024 byte sectors rather than 512 byte
sectors), the limit was extended to 64Mb. As I
understand it, Z-DOS version 4 can go higher,
though I don’t recall the limit. Just remember,
larger than 64Mb will ONLY work with Z-DOS v4. The
fix is easy - just reduce the number of heads or
the number of cylinders being used by PREP until
the number of megabytes is where you want it.

Once PREP has completed, if you run ASGNPART 0:
you will see the two partitions created: Z-DOS and
CP/M. If you are satisfied with these two
partitions, you will not need to repartition the
disk with PART. However, if you wish to change
this partition information, you must run the PART
utility.

The PART utility is self explanatory. Just follow
the procedures as given to change the partition
names and sizes as necessary, then choose a
default boot partition and save the configuration
to the hard drive. When complete, you may need to
reboot the computer to the floppy drive again.

Next run ASGNPART 0: to confirm the partitions are
as you required.

Before we can use the new partitions, you need to
assign drive letters to them and then run FORMAT
to do a high level format of each new partition.

Run ASGNPART 0:(partition name) E: to assign the
drive letter E: to the first partition. Likewise,
assign succeeding drive letters (F:, G:, H:) to
the remaining new partitions (up to four at a
time).

Run FORMAT X:/s/v to format and load the system
files on each new partition, where X: can be E:,
F:, G:, or H:.

If successful, you are now in business. Email me
if you have any difficulty. I hope this helps
clarify the use of Z-100 MFM hard drives.

Closing

Once more, the Z-100 LifeLine website is at:

z100lifeline.swvagts.com or
swvagts.com/z100lifeline

Check out the What’s New page. It has access to a
new Z-100 Index that includes all three major
publications, Z-100 LifeLine, Sextant, and REMark.

The What’s New page also has a link to a For Sale
page that you may wish to check out. I’ve got
quite a collection of parts, software, and manuals
to get rid of. This page will grow as I take
inventory of my excess stock.

Remember, I have now gone paperless. This news-
letter is now shown on the website as a PDF
document that you may read and/or print at your
leisure. I will send an email to you when each
future issue is ready.

Check out the new Website often. I think you will
like it.

 'Til next time,
 happy computing!

Cheers!!!

Steven

My new Z-100 LifeLine email address is:
z100lifeline@swvagts.com

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 10 -

mailto:z100lifeline@swvagts.com


2020

    March 2020

#131

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S-100 Buss Pin Definitions

Schematic Sheet: Technical
Pin: Signal: MBoard ICs: Manual Page:

 1 +8 Vdc (B)
 2 +16 Vdc (B) S2:U228
 3 XRDY (S) S1:U177,U206,U205,U236 S-100 Ready Line, 2.44
 4 VI0* (S) S1:U164 Slave 8259A INTs, 2.15, 2.21
 5 VI1* (S) S1:U164 “
 6 VI2* (S) S1:U164 “
 7 VI3* (S) S1:U164 “
 8 VI4* (S) S1:U164 “
 9 VI5* (S) S1:U164 “
10 VI6* (S) S1:U164 “
11 VI7* (S) S1:U164 “
12 NMI* (S) S1:U182,U156,U189,U210,U211 Non-mask INT, 2.73
13 PWRFAIL* (B) S1:U177 Power Fail, 2.73
14 TMA3* (M) DMA Device Control, 2.66
15 A18 (M) S1:U213 S2:U163
16 A16 (M) S1:U213 S2:U163
17 A17 (M) S1:U213 S2:U163
18 SDSB* (M) S1:U182,U227 Status Line Disable, 2.41
19 CDSB* (M) S1:U180 Control Disable, 2.47
20 GND (0 Vdc)
21 NDEF S1:U215,U188 Assert if 8088 active, 2.33, 2.37
22 ADSB* (M) S1:U182,U196,U197,U213 External Processor, 2.66, 2.67
23 DODSB* (M) S1:U182,U198 External Processor, 2.67
24 Ö (B) S1:U225,U203,U188 S2:U195 System Clock, 2.81
25 pSTVAL* (M) S1:U180 S2:U214 S3:U130,U167 Status Valid, 2.45
26 pHLDA (M) S1:U180 Hold Acknowledge, 2.34, 2.46
27 RFU
28 RFU
29 A5 (M) S1:U197 S2:U181
30 A4 (M) S1:U197 S2:U181
31 A3 (M) S1:U197 S2:U181
32 A15 (M) S1:U196 S2:U162
33 A12 (M) S1:U196 S2:U162
34 A9 (M) S1:U196 S2:U162
35 DO1(M)/ED1(M/S) S1:U198 S2:U178 S3:U132 S4:U244
36 DO0(M)/ED0(M/S) S1:U198 S2:U178 S3:U132 S4:U244
37 A10 (M) S1:U196
38 DO4(M)/ED4(M/S) S1:U198 S2:U178 S3:U132 S4:U244
39 DO5(M)/ED5(M/S) S1:U198 S2:U178 S3:U132 S4:U244
40 DO6(M)/ED6(M/S) S1:U198 S2:U178 S3:U132 S4:U244
41 DI2(S)/OD2(M/S) S1:U217 S2:U223 S3:U133 S4:U241
42 DI3(S)/OD3(M/S) S1:U217 S2:U223 S3:U133 S4:U241
43 DI7(S)/OD7(M/S) S1:U217 S2:U223 S3:U133 S4:U241
44 sM1 (M) S1:U227 OpCode Fetch, 2.42, 2.134
45 sOUT (M) S1:U227 S2:U214 Write to Port, 2.42, 2.90, 2.134
46 sINP (M) S1:U227 S2:U214 Read Port, 2.42, 2.90, 2.134
47 sMEM (M) S1:U227 S2:U214 Read Memory, 2.42, 2.134
48 sHLTA (M) S1:U227 Halt Acknowledge, 2.42, 2.134
49 CLOCK (B) S1:U216,U192
50 GND (0 Vdc)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 11 -



S-100 Buss Pin Definitions

Schematic Sheet: Technical
Pin: Signal: MBoard ICs: Manual Page:
51 +8 Vdc (B)
52 -16 Vdc (B) S2:U229
53 GND (0 Vdc)
54 SLAVE CLR* (B) S1:U201,U207 Unused, 2.39
55 TMA0* (M) DMA Device Control, 2.66
56 TMA1* (M) “
57 TMA2* (M) “
58 sXTRQ* (M) S1:U227 Unused 16-bit Req Status, 2.41
59 A19 (M) S1:U213 S2:U163
60 SIXTN* S1:U182 Able to Use 16-bits, 2.41
61 A20 (M) S1:U213 S2:U163
62 A21 (M) S1:U213 S2:U163
63 A22 (M) S1:U213 S2:U163
64 A23 (M) S1:U213 S2:U163
65 NDEF
66 NDEF
67 PHANTOM* (M/S) S2:U195,U194,U161,U190 RAM Swap, 2.52, 2.54, 2.64
68 MWRT (B) S1:U216,U215 S2:U214 Memory Write, 2.4, 2.47
69 RFU
70 GND (0 Vdc)
71 RFU
72 RDY (S) S1:U177,U206,U205,U236

S2:U194 S3:U158 S100 Ready Line, 2.44
73 INT* (S) S1:U177,U202,U158,U208 INT Request, 2.70
74 HOLD* (M) S1:U185,U186 CPU Hold Request, 2.34, 2.38
75 RESET* (B) S1:U201,U207 Reset Signal, 2.39
76 pSYNC (M) S1:U180 S2:U195 Synchronization, 2.45, 2.55, 2.58
77 pWR* (M) S1:U180 S2:U214 Valid Write Data, 2.47, 2.48
78 pDBIN (M) S1:U180 S2:U214 Data Bus IN, 2.40, 2.46, 2.54, 2.63
79 A0 (M) S1:U197 S2:U181
80 A1 (M) S1:U197 S2:U181
81 A2 (M) S1:U197 S2:U181
82 A6 (M) S1:U197 S2:U181
83 A7 (M) S1:U197 S2:U181
84 A8 (M) S1:U196 S2:U162
85 A13 (M) S1:U196 S2:U162
86 A14 (M) S1:U196 S2:U162
87 A11 (M) S1:U196 S2:U162
88 DO2(M)/ED2(M/S) S1:U198 S2:U178 S3:U132 S4:U244
89 DO3(M)/ED3(M/S) S1:U198 S2:U178 S3:U132 S4:U244
90 DO7(M)/ED7(M/S) S1:U198 S2:U178 S3:U132 S4:U244
91 DI4(S)/OD4(M/S) S1:U217 S2:U223 S3:U133 S4:U241
92 DI5(S)/OD5(M/S) S1:U217 S2:U223 S3:U133 S4:U241
93 DI6(S)/OD6(M/S) S1:U217 S2:U223 S3:U133 S4:U241
94 DI1(S)/OD1(M/S) S1:U217 S2:U223 S3:U133 S4:U241
95 DI0(S)/OD0(M/S) S1:U217 S2:U223 S3:U133 S4:U241
96 sINTA (M) S1:U227 INT Acknowledge, 2.42, 2.134
97 sWO* (M) S1:U227, S2:U214 Memory Write, 2.42, 2.83, 2.134
98 ERROR* (S) S1:U177,U208 S3:U158 RAM Error, 2.15, 2.60
99 POC* (B) S1:U201,U207 S2:U215 Power-On Clear, 2.39, 2.73, 2.142
100 GND (0 Vdc)

Note: TMA (Temporary Master Access) was previously named
DMA (Direct Memory Access), used by the hard drive
controller, but not the floppy controller.

SW Vagts, Editor, Z-100 LifeLine, February 2020

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 12 -

