
2022

 March 2022

#WEB
This article was first published in issue #109, February 2007

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

First Operational IDE

Controller in a Z-100!

Finally, after years of work by the talented
"Z-100 LifeLine" staff - Charles Hett, John
Beyers, and myself, I get to test the latest
version of the Z-100 IDE controller, version 3,
which truly looks very promising.

In case you may have wondered why we were taking
so long on development, and since this is really
the first opportunity that I've had for showing
you some pictures, I thought you might enjoy
seeing the four IDE controller boards that we
went through:

The first board (top left) was our wirewrap
board. Mine (pictured) has only the NVsRAM
circuit and was described back in issues #94 and
#97. Charles Hett had the full circuit on his
board.

The second (bottom left) was our first prototype
using a small Altera programmable integrated
circuit, the medium-sized square in the lower
left corner.

The third (top right) was our second prototype
version using a larger Altera programmable chip
(below and left of center) that replaced many of
the smaller integrated circuits.

The fourth and hopefully last (bottom right) was
our third prototype version. This one separated
the left and right IDE connectors entirely and
added several resistor packs. This one appears
to have finally fixed our interference problems.

I thought the next logical step would be to see
how someone would install the device in an
actual Z-100.

So, using a version 2 controller with one of the
drives that worked well with it, I decided on
doing just that.

The first decision was which Z-100 model would
be the hardest to convert?

The Z-120 model had a very adaptable drive tower
that I've easily converted to hold several com-
binations of half-height floppy and hard drives
and the plastic face plates were plentiful and
easy to work with.

I have found the low profile Z-110 models were a
bit less adaptable and harder to work with. But
if you already had a unit with two half-height
floppy drives, or with one half-height floppy
and a full-height hard drive where the hard
drive's faceplate was integral with the entire
plastic faceplate, conversion is easy.

After much thought, I decided on an older Z-110
low profile model that sported two old full-
height floppy drives with an aluminum faceplate
that wouldn't serve any useful purpose anywhere
else, and I just happened to have such a candi-
date on hand.

This model also did not have the usual hard
drive power cables and these would not be
necessary after the conversion either. However,
as I had several Z-120 power supplies handy, for
flexibility and testing purposes, I changed out
the power supply and swapped the cases anyway.

So, follow along as we convert this old work-
horse into a new, ready for anything, thorough-
bred.

First, I dismantled the entire unit, carefully
storing away the old full-height drives - you
never know when someone might call looking for
one of these old dinosaurs. Then I began with
the power supplies. For some reason this old one
had the connector for the MFM hard drive data
separator card, but none for the Z-217 control-
ler card. I had never seen that before. I wonder
what it was meant to power?

Anyway, as I wanted the flexibility of being
able to connect to old MFM hard drives if
needed, I removed a newer model power supply
from its Z-120 case, gave it a thorough cleaning
and visual inspection for bad solder joints, and
then installed it in the Z-110 power supply
case.

1



Next, I cleaned and visually inspected the
motherboard. Fortunately, it was a newer 5MHz
motherboard with 768k RAM already installed
using a RAMPAL kit, but it did not have all the
chips deemed necessary by Heath/Zenith for 8 MHz
operation. Undeterred, I slapped in a 24MHz
oscillator assembly at U236 anyway. For those
who may not recall, I've described this assembly
way back in issue #78 and its use in several
articles since.

From experience, I have found that most 5 MHz
newer motherboards can easily be pushed to about
10 MHz with the change of just a few chips. I
changed the 8088, U211, to a 8MHz unit and the
delay line at U149 from a 200ns unit to a 100ns
unit (a 150ns unit would have been better, but I
did not have one). I also changed the ROM chip
at U190 to our new ROM v4.3 and remembered to
change the jumper at J101 from 0 to 1 as
required for the larger ROM chip.

Note: If you forget to change this jumper, no
harm is done; you will just find that you won't
have video.

Next, I cleaned and visually inspected the video
board. It had 64K chips in all three banks and
it was configured properly for color.

Next, I cleaned and visually inspected the
floppy controller. It was an older model and
obviously hand assembled, though very neatly
done. As I was hoping to install a single 5-1/4"
floppy and a single 3-1/2" floppy, I went ahead
and completed the Barfield modifications as
described in another article on the "Z-100
LifeLine" website.

Finally, I felt ready to take the unit on a test
spin. As with most complicated systems, when
powering up an unknown Z-100 for the first time,
I find it is always best to reduce the computer
to the bare minimum number of boards to elimin-
ate as many variables as possible for trouble-
shooting purposes. The reduced load also re-
lieves pressure on the power supply, which may
not have been on in quite a while, allowing the
capacitors to reform properly before being
placed in full service.

So, I installed the power supply, motherboard,
and video card, and then attached the keyboard,
power cable, and monitor.

Rechecking everything in place, I crossed my
fingers and powered up. As expected, I got the
initial "Primary Z207 Controller ERROR" because
I did not bother installing any of the control-
ler cards yet and the floppy controller was the
default device (set by section 3 of the bank of
switches at S101 on the motherboard). At the
hand prompt, I selected the memory test and let
it run. No problems.

I swapped out the 24MHz oscillator with a 28MHz
oscillator and tried again. A short time later I
got my first RAM error. 
 
I rechecked the speed of the chips - 120ns,
which was certainly fast enough, and I retried
the memory test several more times.

Interestingly, on each run, a different chip was
reported bad. OK, so I reasoned it was not the
actual RAM chip that was bad. In cases like
these, I normally go to the manual describing
the HA-108 speedup and memory upgrade and try
changing out the chips described in that
upgrade.

In this case, I began with those chips around
the memory and front of the motherboard and
quickly found that swapping out the 74LS368 chip
at U200 with the 8T98 recommended by the upgrade
manual fixed the problem. This chip is in the
CPU clock circuit and so could logically cause
the random RAM errors.

I swapped out the 28MHz oscillator with a 30MHz
oscillator and tried again. Everything was still
OK.

Powering down again, it was time to try the
floppy controller board. I installed the board
and attached a 5-1/4" drive and powered back up.
This gave me bad floppy controller errors.

The HA-108 upgrade mentions that at faster
speeds we need to install a wait state jumper at
J106-1, which is located beside U233A near the
front right corner of the motherboard.

Installing this jumper eliminated the bad floppy
controller errors.

Great, time to add the MFM hard drive system so
I can boot the beast and run full diagnostics.

I have never found a Z-217 hard drive system
that would not work properly at 10 MHz and today
was no exception. The unit booted fine and I
began to run diagnostics.

RAM was fine, but when I tried testing the
floppy controller board, I got access errors,
register errors, and head load errors!

Slowing to 8 MHz and swapping out Z-207 floppy
controller boards gave me all kinds of differing
symptoms, most of which I had expected.

To sum up, I have historically found that the
most speed sensitive chip on the Z-207 card
seems to be the controller chip at U22. The
popular WD1797B controller chip is rated for 5
MHz and the WD1797B-02 controller chip is rated
for 8 MHz. However, in practice, I've found some
5 MHz chips work to 10 MHz and some 8 MHz chips
will not run at 8. If you are getting access,
register, or read/ write errors, you need to
slow down. The controller chip is generally the
culprit and these chips can no longer be located
for reasonable prices.

If swapping out the U22 controller chip won't
fix the problems, then look to the chips
mentioned by DIAG. Don't limit your trouble-
shooting to those chips, as these are just
suggestions and due to interaction with other
chips on the board, the actual culprit could be
elsewhere. You may need to swap out every chip
on the board to find the problem.

2



Anyway, out of 5 floppy controller boards that
I had handy (some of which already had known
problems that I hadn't had time to troubleshoot
yet), I finally managed to get all the boards to
the same level of repair. I had to recalibrate
three boards - one had a bad R1 potentiometer,
another a bad U5 (74LS624) chip and the third
just needed readjustment.

I had to slow to 6.3 MHz to get all the con-
trollers to work, but at 8 MHz, two boards still
reported Head Load errors. Without going into
circuit theory, Head Load is only used for eight
inch drives and is set by resistor R18 and
capacitor C48 attached between pins 1 and 2 of
U15, a 96LS02 chip.

It seems that on these two boards the timing is
just off enough to cause errors about 20% of the
time at 8 MHz. I've tried replacing the capaci-
tor on one board, but the old capacitor tested
as good as the new one and replacement with the
new one did not eliminate the problem.

Likewise, in-circuit testing (while removing
U15) showed the resistors and the capacitors
were at their correct values. So, the fault is
either the resistor/capacitor timing is just
outside the desired value or the testing done by
DIAG is affected by the faster computer speed
and incorrectly reports an error. I will have to
investigate this further later.

A more prevalent error, affecting all 5 of my
boards at 8 MHz or greater, reports that power
is not on at the drive with the failure rate
increasing with any increase in CPU speed.

As DIAG was designed to run at 5 MHz and possi-
bly may run properly at 8 MHz, I am convinced
that this may be a problem with DIAG, as the
controller reads and writes to the drives just
fine, even if the controller reports a power
failure on every pass. I will have to look into
this further also.

Anyway, after much testing, I found a suitable
floppy controller card that works fine at 8 MHz,
if we disregard the floppy drive power failure
errors. I will leave this computer running at 8
MHz.

Now it is time to figure out how you want to
configure your computer to accommodate one or
more IDE drives. In my case, I felt one IDE
drive would be sufficient. The one that worked
with this particular prototype card was only
264Mb. But considering that the most popular MFM
drive that I used was 40Mb, 264Mb would be much
more than I would ever need. The newer IDE
controllers will be able to handle four such
drives.

However, one consideration that you must think
about is drive back-up. On a Z-100, how does one
intend to back up 264Mb of data? The obvious
solutions of today's PC's - the CD or DVD - will
not be available on a Z-100, at least not in the
foreseeable future.

Tape - if you can still find such a unit? I
didn't like that idea even when I just wanted to
backup 20Mb of data.

No, I would think that backing up one IDE drive
with a second unit would be the answer. So, you
may want to figure on a minimum of two drives,
if you are concerned about critical data. One
could still be MFM, but why hang on to that
dinosaur. At the low cost of used IDE drives,
just use two of them. 
 
On my unit, a proof of concept prototype, I did
not need a second drive (and this particular
card did not like two drives anyway). However,
as we go through the installation, you will see
that there is plenty of room for adding a second
drive right over the first. With the floppy
controller (upgraded) to control a single 5-1/4"
and a single 3-1/2" drive and these mounted
directly over one another, I have a large bay
remaining to contain two and possibly even three
IDE drives, if I so desired.

Pix 2 shows the partially modified drive bay
cover of the Z-100. Originally looking like the
center drive area, the right bay has already
been modified to accommodate the over/under
configuration of the 5-1/4" and 3-1/2" drives.
This aluminum faceplate was a real monster to
cut out - hours of hacksawing and filing. The
newer plastic faceplates are much easier to
modify.

The upper left black rectangle shows the back of
the modified hard drive faceplate that will
cover the left (unmodified) drive bay. The upper
right shows the front of an unmodified hard
drive faceplate.

Note: To cover the old drive slot completely,
the 5-1/4" drive must be positioned precisely
5/8" above the bottom of the bay. I used wood
spacers 5/8" x 3/4" x 5" cut from common 3/4"
stock on a table saw. The drive combination then
completely eliminated the odd looking original
bay cover. The middle bay will be completely
covered with the faceplate of a full-height hard
drive no longer being used.

3



These full-height faceplates should be easy
enough to locate nearly anywhere that handles
old drive equipment. If you have difficulty, I
have plenty. 
 
It is hard to see in this picture, but the left
drive cover has already been modified and shows
where the breakout switch and drive LEDs for the
NVsRAM and up to four IDE drives are located.
Pix 6 has a better, front view.

Pix 3 shows the rear of the drive bays. Pix 4
shows the front with the drive faceplate in
place.

The 5-1/4" drive is mounted on 5/8" wooden
spacers to fit in the cutout of Pix 2. The
3-1/2" drive is mounted over the 5-1/4" drive
using the lower drive's flat upper shield.

The ribbon cable runs from the Z-207 Floppy
Controller (not pictured) to the 5-1/4" drive
and then the 3-1/2" drive.

Note: The 5-1/4" drive (configured as drive A:)
does not need a terminator resistor in this
arrangement. Most 3-1/2" drives are purchased
configured as drive B: and cannot be configured
any other way. They depend upon a twist in the
PC's ribbon cable to become drive A:. Termina-
tion in a 3-1/2" drive is also integral to its
circuitry and cannot be removed.

As every Z-100 configuration will probably be
different and the LED drive lights are not
necessary for operation, no attempt is being
made to devise a cable to mount IDE drive lights
anywhere on the Z-100's exterior. For trouble-
shooting purposes, each board will be shipped
with a bank of drive LED's mounted on the
connector attached to the top of the IDE
Controller Card (see Pix 1) and a breakout
switch is already mounted on the board to the
right of the IDE connectors.

However, for this computer, I devised one
possible cabling solution you might consider.

Pix 5.
IDE Controller Board

Pix 5 shows the IDE Controller Board with the
drive LED ribbon cable connected at the LED
connector at the top of the card. The other end
of the ribbon cable ends in a SIP connector that
slips onto the leads of the LED's installed in a
row on the drive faceplate.

Note: Referring to Pix 6, the drive LED's are
configured so that a yellow LED indicates data
is being read from the NVsRAM. The rest of the
LED's are red and indicate data being written to
the NVsRAM, and read/write operations to IDE
drives connected as J1 master, J1 slave, J2
master and J2 slave, in that order. The last two
wires from the ribbon cable are connected to a
separate, normally open, pushbutton, breakout
switch also installed on the faceplate. The
switches are available from Radio Shack, part
#275-1547.

4



Pix 7 shows the interior of the finished con-
figuration.

With the hardware modifications completed, we
turn our attention to the software issues.

Programming the NVsRAM on
the IDE Controller Board.

The heart of the boot up operation on the IDE
Controller Board is the NVsRAM chip, also
commonly referred to as the EEPROM to remain
consistent with the terminology used previously
to describe the EEPROM on the “Z-100 LifeLine”
SCSI Controller Card.

NVsRAM is the acronym for NonVolatile Static
Random Access Memory. This is memory that can be
programmed and then an internal battery in the
chip will hold this programming in memory until
the chip is reprogrammed or erased.

Programming the chip is not difficult, but for
frequent changes, it can be a pain, so I devel-
oped a couple of batch files to make programming
somewhat easier. These, or something similar,
will be distributed with the Controller Boards.

First off, memory in the NVsRAM is limited.
Depending upon the model, it can be less than
64K, 128K, 256K, 512K, or more than 1Meg. With
the growing needs of Z-DOS boot files for space,
it was becoming increasingly difficult to fit
all the desired files on a standard 360K, 5-1/4"
floppy and the 1 meg NVsRAM with a clock was
going to require additional circuitry on our
board. So, due to space and circuit require-
ments, we settled on a 512K NVsRAM with an
internal clock to best suit our needs.

Also, as it was desirable to minimize the space
required by the boot files, I thought it best to
use a handy compressing utility called PKLITE to
compress the files that could be.

As it turns out, everything fit comfortably on
the 512 NVsRAM, with plenty of room for addi-
tional files, but in case you find yourself
pressed for space for your own requirements,
let's pretend that we need to do it anyway.

Compacting or compressing IO.SYS and MSDOS.SYS
will realize the following savings:

    File:          Normal:   Compressed:
    IO.SYS         32915     26344 bytes
    MSDOS.SYS      37376     27683 bytes

Once compressed, the files will still execute,
but cannot be changed. A full review of PKLITE
can be found in issue #93 of the "Z-100 Life-
Line".

PKLITE can also be used on most of the other
files that you may want to place on the NVsRAM
if you need even more space.

Note: Compressing IO.SYS does create one problem
that may not make it worth all the effort. When
creating bootable floppy disks using the FORMAT
A:/s/v command, the compressed system files will
be transferred to the newly created floppy disk.
If you then run DRIVECFG on the new floppy disk,
you will get the error:

    Version mismatch with file!!!!

5



This is because during compression all the
DRIVECFG data will have been moved from where
it should be located.

The first batch file, PACK_IO.BAT, is used to
compress IO.SYS. PACK_IO.BAT contains:

@ECHO off
ECHO This utility uses PKF00.COM to PKLITE
     IO.SYS and creates IO-PK.SYS.
ECHO.
ECHO NOTE: Before using this utility, run
     DRIVECFG and CONFIGUR to ensure
ECHO that IO.SYS is configured properly.
     The PKLITE version of IO.SYS
ECHO cannot be changed.
ECHO.
ECHO When completed, copy IO-PK.SYS to
     a bootable drive as IO.SYS.
ECHO.
ECHO Use {CTRL}-{C} to exit, or
PAUSE
COPY IO.SYS IO.COM/y >nul
PKLITE IO.COM >nul
PKF00 IO.COM
if exist IO-PK.SYS DEL IO-PK.SYS
REN IO.COM IO-PK.SYS

Description: ECHO thru PAUSE is just a helpful
reminder about what the batch file does. As
PKLITE cannot operate on a system (.SYS) file,
the name is changed first. PKLITE is then used
to compress IO.COM and PKF00 is used to adjust
the start of the new program at offset 100h
instead of offset 00h. Finally, if IO-PK.SYS
exists, it is deleted and the compressed IO.COM
is renamed to IO-PK.SYS.

Similarly, a second batch file, PACK_DOS.BAT, is
used to compress MSDOS.SYS. PACK_DOS.BAT
contains:

@ECHO off
ECHO This utility uses PKF00.COM to PKLITE
     MSDOS.SYS and creates DOS-PK.SYS.
ECHO.
ECHO NOTE: The PKLITE version of DOS.SYS
     cannot be changed.
ECHO.
ECHO When completed, copy DOS-PK.SYS to
     a bootable drive as MSDOS.SYS.
ECHO.
ECHO Use {CTRL}-{C} to exit, or
PAUSE
COPY MSDOS.SYS DOS.COM/y >nul
PKLITE DOS.COM >nul
PKF00 DOS.COM
if exist DOS-PK.SYS DEL DOS-PK.SYS
REN DOS.COM DOS-PK.SYS

Description: Again, ECHO thru PAUSE is just a
helpful reminder about what the batch file does.
As before, the name is changed first. PKLITE is
then used to compress DOS.COM and PKF00 is used
to adjust the start of the new program to offset
100h. Finally, DOS-PK.SYS is deleted and the
compressed DOS.COM is renamed to DOS-PK.SYS.

The last batch file, EPROMPGM.BAT, is used to
actually program the NVsRAM on the IDE control-
ler card. EPROMPGM.BAT copies all the files that
you wish to transfer to the NVsRAM and, for my
purposes, contains:

ECHO off
ECHO This file assumes that IO.SYS and
     MSDOS.SYS have been packed to 
ECHO IO-PKSYS and DOS-PK.SYS with the
     PACK_IO.BAT and PACK_DOS.BAT and
ECHO are located in the \EPROM directory
     with this batch file.
ECHO Place COMMAND.COM in the \EPROM Dir.
ECHO Place all other files to be copied
     to the IDE EPROM in \EPROMPGM.
ECHO All files presently on the EPROM will
     be deleted!
ECHO Type{CTRL}-{C} to exit or
PAUSE
ECHO Deleting all files on the EPROM...
DEL K:*.*
ECHO Copying COMMAND.COM...
COPY COMMAND.COM K:/v
ECHO Copying IO-PK.SYS to K:IO.SYS
COPY I-PK.SYS K:IO.SYS/v
ECHO Copying DOS-PK.SYS to K:MSDOS.SYS
COPY DOS-PK.SYS K:MSDOS.SYS/v
ECHO Copying all files from L:\EPROMPGM to K:
COPY L:\EPROMPGM\*.* K:/v
ECHO Calculating Checksum and saving to
     NVsRAM.
CHKSUMEP
ECHO.
ECHO Running EPRDFILE to save programming in
     backup file, EPTEST.DAT.
EPRDFILE
ECHO  EPROM programming completed.
ECHO  Remember to run CHKSUMEP after making
      any other changes to the EPROM.

Description: As before, ECHO thru PAUSE is just
a helpful reminder about what the batch file
does. The COPY commands copy the system files to
the NVsRAM, followed by all the files from an
\EPROMPGM directory on the IDE drive.

Note: The usable size of the NVsRAM is presently
limited to 507K. So ensure the files in the
\EPROMPGM directory do not exceed this amount,
less the size of the system files.

CHKSUMEP is automatically run to calculate the
checksum and place that on the NVsRAM.

EPRDFILE is run to save a data file EPTEST.DAT
on the default drive as a data backup (more on
this later).

Once completed, additional files can be copied
to the NVsRAM manually, but remember to run
CHKSUMEP again and last to validate the pro-
gramming.

I also recommend running EPRDFILE again to save
the programming in a backup data file. Upon
rebooting, the NVsRAM is ready for use.

With the batch files in place, we are nearly
ready.

6



We are used to booting to a hard drive or a
floppy drive that has the DOS commands in a
directory on the same drive.

Now, with the NVsRAM on the IDE Controller
controlling the boot process, we either place
all the DOS commands in the NVsRAM or have some
means to have any request for a DOS command
refer to the right drive. In the past, this had
always been controlled by use of the PATH
command in the AUTOEXEC.BAT file.

For example, the AUTOEXEC.BAT file in my
computers generally looked like:

ECHO Off
ASGNPART 0:Z-DOS4 E:
PATH=E:\;E:\DOS
SET ZDIR=/F
PROMPT $P$G

With this simple AUTOEXEC.BAT file executed
during boot up, any DOS command on the command
line would be directed to look in the root
directory of the MFM hard drive unit 0, in the
partition labelled Z-DOS4, with the drive letter
E: assigned to it and if not found there, it
would look next in the \DOS directory.

As you may recall, DRIVECFG assigns drive
letters to the various floppy and hard drives
on the computer using Z-DOS v4.

On my computers, for standardization among the
many different computer configurations that I
have around the house, I generally assign the
first four drive letters, A thru D to the floppy
drives; E: thru H: to the MFM hard drive parti-
tions; I reserve drive letter I to be mapped as
an imaginary drive by assigning it to map drive
A:; and finally, DRIVECFG automatically assigns
the next available drive letter to the EEPROM on
either the LLSCSI board or the IDE board,
depending on if either is detected.

The next available drive letter is then assigned
to any drive and their partitions found on
either board.

This has worked out well for me in the past.

The IDE drive, however, on my computer is
assigned the drive letter K: by DRIVECFG.COM.
And the NVsRAM (referred to as EEPROM) on the
IDE card, is assigned drive letter J:

Using the AUTOEXEC.BAT configuration above,
however, now generates an error if the MFM hard
drive is not attached.

    Physical Sector Zero is not readable,
    unit does not exist.

So, we need to configure the AUTOEXEC.BAT file
on the NVsRAM to refer to the proper drive for
executing DOS commands. If there will not be any
MFM hard drive system on the computer, change
the AUTOEXEC.BAT file to:

ECHO Off
PATH=J:\;K:\;K:\DOS
SET ZDIR=/F
PROMPT $P$G

If you intend to leave an MFM hard drive in the
system, but will be booting to the NVsRAM as the
primary drive, you may wish to use something as
complicated as:

ECHO Off
ASGNPART 0:Z-DOS4 E:
PATH=J:;E:\;E:\DOS;K:\;K:\DOS
SET ZDIR=/F
PROMPT $P$G

Obviously, the object is to let the computer
know where to find the files you wish to run.

Note: The IDE driver will automatically recog-
nize two partitions on each of up to four IDE
drives and assign them drive letters. Any addi-
tional partitions on drives will require the use
of an IASNPART utility that will operate in a
manner similar to ASGNPART.

Note: All the above drive configurations have
assumed that four partitions have been set aside
for MFM hard drive use. If you do not intend to
ever worry about an MFM hard drive again, just
delete those drive letters using DRIVECFG. The
IDE driver will adjust the IDE drive letters
accordingly.

We have one last complication to address, and I
saved it for last.

Back up in the programming batch file, you may
have noticed that the drive letters were changed
from the ones that we had assigned automatic-
ally. The IDE driver is configured to add a
different drive letter to the NVsRAM when it is
being programmed, and this causes the IDE drives
to bump down to the next available drive letter
after this new drive is listed.

For example, the normal IO.SYS boot screen will
list the drives as configured by DRIVECFG and
others found as:

    A: LOW Den.  48tpi 5 1/4"  34 Z207p 0
    B: DUL Den. 135tpi 3 1/2"  34 Z207p 1
    C: LOW Den.  48tpi 5 1/4"  34 Z207p 2
    D: LOW Den.  48tpi 5 1/4"  34 Z207p 3
    E: Fixed Disk Partition       Z217p
    F: Fixed Disk Partition       Z217p
    G: Fixed Disk Partition       Z217p
    H: Fixed Disk Partition       Z217p
    I: Imaginary Drive mapped to A:
    J: EEPROM on IDE  LifeLine Board  s
    K: ST3290      FAT16    261MB LIDEp 0

As one of several protection methods against
accidently programming, or inadvertently chang-
ing the NVsRAM programming, we felt it best to
only enable programming the NVsRAM by loading a
separate driver, EPROMDSK.SYS during the boot
process.

7



Therefore, CONFIG.SYS, which we will describe in
great detail in a moment, has a separate section
that is enabled to load this driver only when we
specifically ask for it.

So, when we want to program the NVsRAM, the
NVsRAM is actually enabled for programming and
the IO.SYS boot screen becomes:

    A: LOW Den.  48tpi 5 1/4"  34 Z207p 0
    B: DUL Den. 135tpi 3 1/2"  34 Z207p 1
    C: LOW Den.  48tpi 5 1/4"  34 Z207p 2
    D: LOW Den.  48tpi 5 1/4"  34 Z207p 3
    E: Fixed Disk Partition       Z217p
    F: Fixed Disk Partition       Z217p
    G: Fixed Disk Partition       Z217p
    H: Fixed Disk Partition       Z217p
    I: Imaginary Drive mapped to A:
    J: EEPROM on IDE  LifeLine Board  s
    K:  512K EPROMDSK/CLOCK (programming)
    L: ST3290      FAT16    261MB LIDEp 0

CONFIG.SYS is controlling all of this and for
those of you who are still using the old three
or four line CONFIG.SYS, you will have to get
used to the new expanded version.

The new CONFIG.SYS has its own article on the
“Z100 LifeLine” website. It explains CONFIG.SYS
in much greater detail, with examples.

While CONFIG.SYS may appear very complex, it
really is not so bad once you are familiar with
the outline structure.

The following is a much abbreviated version with
all the comment lines still included to help you
along. The version you use for your computer can
be edited down much further. I recommend not
eliminating all the comments, however, to ease
in making changes at a later date.

CONFIG.SYS contains:
Rem   SECTION 1 - Common Commands
; lines always included
Comment=   ;
; Permit comments on line after command
Break=On      ; Check for CTRL-C
Buffers=32,8  ; 32 buffers, 8 sector R/W
Files=30      ; 30 open files allowed
LastDrive=Z   ; Permit 26 drives
;     SECTION 2 - Custom Commands
; Options defined by a letter:
:0   ; Default Selection - No key pressed
#0   ; Include Common Block LLIDEHD
:P   ; NVsRAM Programming
device=EPROMDSK.SYS /256/W0
#0   ; Also include LLIDEHD after EPROMDSK
:R   ; RAM Disk Installed
device=Z205DSK.SYS
:Z   ; Last option ID - don't load anything
; Last option id - don't do anything
::   ; Section 3 - Condensed Commands
; This is where common # blocks are defined:
#0   ; Common block 0
device=LLIDEHD.EXE /F   ; IDE device driver
Install=SHARE.EXE  ; Drive Partition >32Mb
##   ; Section 4 - Secondary Custom Commands
; These are lines common to all options.
^Z   (Crtl-Z marks end of file)

Section Descriptions:

Section 1 lists the commands that are common to
all options. Many of these commands could have
been moved to the individual options to accom-
modate special requirements of applications.

For example: a particular application may
require more buffers than usual; so you would
list Buffers under each option in Section 2 and
specify the number for each application. 
 
Section 2 is where special drivers are loaded
for their particular application. If a parti-
cular driver is needed under several options,
it could be placed in Section 3 as a common
block, defined as a pound sign(#) and a number.

For example; the LLIDEHD driver will be required
in most options. Rather than listing it indi-
vidually under each, #0 is a marker placed to
define those commands in Common Block #0.

Section 3 lists and defines all the Common
Blocks. These blocks, defined with a pound (#)
sign, may be used in multiple individual options
given in Section 2.

Section 4 is provided for any command that has
to be executed after all the drivers are loaded.
Finally, finish editing the file with a CTRL-Z
as an End-of-File marker, if needed.

Note the INSTALL=SHARE.EXE line in the CONFIG
.SYS file. SHARE is necessary and should be
installed any time you are operating a system
with a drive containing one or more partitions
greater than 32Mb.

The deal is that old "File Control Blocks" or
"FCB's" cannot hold pointer information in its
"Reserved Fields", on files located on disk
locations past 32Mb's. FCB's will only work
correctly as long as a file is physically
located within the first 32Mb's of a partition's
start. If part of the file lies past this 32Mb
range, the FCB does not complain or generate an
error, it just rolls the pointer value over,
through zero, and gives DOS a new garbage value
as an internal disk pointer. The next disk read
gives junk to your program, and the next write
corrupts your disk!

Without going into detail, the reason SHARE is
the solution is because it was already doing the
required fix for a different reason in small
partitions. For a more detailed explanation, see
the SHARE help screen in the Z-DOS v4 help
directory.

Now we have all the parts in place. The only
other change to worry about is the Boot command.

8



ROM v4.3 Boot Up Sequence

Unless you have been using Autoboot all your
life, you are already familiar with most of the
Boot options. Remember, Autoboot can be disabled
by setting section 3 of S101 on the motherboard
to ON or 0 (toward the rear of the computer).

You can also get to the hand prompt by pressing
the {DELETE} key at which time the computer will
respond with "Boot Abort" and the hand prompt. 
 
Note: The version 4.3 Monitor ROM now displays
the Help screen before the hand prompt. Other-
wise, it will display an error message and the
hand prompt as in earlier ROMs. 
 
Unless you have played with the LifeLine SCSI
board, you are probably not familiar with all
the changes to the Boot options since version
3.0 of the ROM. So, let me briefly cover these
Boot options.

The Boot command will boot the Disk Operating
System from a diskette, MFM hard drive, a SCSI
drive from a Z-317 controller card, or a “Z-100
LifeLine” SCSI or IDE Controller Card.

The Boot Syntax is:

    Boot [F1-4][Unit#][S][:partname]

Where: 
    F1    specifies a drive attached to the
          Z-207 34-pin connector and may be
          either a 5-1/4" or 3-1/2" floppy
          drive.
    F2    specifies a drive attached to the
          Z-207 50-pin connector and may be
          either a 3-1/2" or 8" floppy
          drive.
    F3    specifies a hard drive; either an
          MFM drive attached to a Z-217 or
          Z-317 controller or a SCSI drive
          attached to a Z-317 controller.
    F4    specifies a bootable EEPROM on the
          LLSCSI controller board or, when
          used with the [S], an NVsRAM on
          the LLIDE controller board.

    Unit# specifies the drive unit number as
          set on the drive's DS (drive
          select) jumpers. This may be 0, 1,
          2, or 3.

    S     specifies a secondary floppy or
          hard drive controller; 
          it also specifies the NVsRAM on
          the LLIDE Controller Card

    :partname  specifies the partition name
               on a hard drive to boot from.

To manually boot the computer, press the {B}
key. With the version 4.3 Monitor ROM, the
computer will now display the default boot
device as set by the S101 switches on the
motherboard.

On my computer, the display is:

    Default Booting Primary Z207 34pin Unit 0
    Input BOOT string<CR>_

and the computer will wait for you to type on
the keyboard to give it more information.

If you press the {RETURN} key, the computer will
begin to boot the operating system from the
default device, drive zero, as determined by the
setting of switch S101 on the motherboard.

This device can be a 34-pin floppy drive unit
zero, a 50-pin floppy drive unit zero, the first
MFM hard drive, or the bootable EEPROM on the
LLSCSI board.

If you press the {F1}, {F2}, {F3}, or {F4} key
followed by the {RETURN} key, the computer will
boot from unit zero of a specific device without
regard to the settings of S101 on the mother-
board.

The monitor ROM can support up to four drives of
each type. Therefore, you can boot from any
drive by typing its unit number, 0, 1, 2, or 3
after the {F1}, {F2}, or {F3}. If the device is
not present or is faulty, after about 30 seconds
a "Device Error" message will appear on the
screen.

You can boot the computer from any partition on
the Z-317 SCSI drive or MFM hard drive if there
is an operating system on it. To do this, type:

    {B}{F3}{:partname}{RETURN}

The screen will display:

    Default Booting Primary Z207 34pin Unit 0
    Input BOOT string<CR>f3:(partition name)

The optional {S} key is used to boot from the
Secondary device (the second Z-207 floppy disk
controller card, second hard drive controller
card, or from the LLIDE controller card (the
LLSCSI controller card is considered the primary
card). If the device is not present, or is
faulty, after about 30 seconds a "Device Error"
message will be displayed.

To Boot from the LLIDE controller card, you must
type:

    {B}{F4}{S}

The computer will display: 
 
    Default Booting Primary Z207 34pin Unit 0 
    Input BOOT string<CR>f4S

9



IO.SYS Boot Screen
 
The Boot sequence begins by displaying the
IO.SYS Boot Screen. This screen looks very
similar to the screen displayed during the
DRIVECFG configuration process. It lists the
MS-DOS Version Number and BIOS Version Number
and then all the drives configured by DRIVECFG
in a display window (an example is shown
earlier). In the bottom of the window, more
system information is displayed:

  MTR ROM V4.x, xxxK RAM, xxK COLOR Video,
    CPU, and x.xxxx MHz CPU Speed.

Below the window, messages appear indicating the
status of the normal boot process. These
messages are:

    ** Initializing Motherboard Parity **

This message only appears on a power-up (cold)
boot. The parity is not checked on a warm boot
(when you press the breakout switch or {CTRL}-
{RESET} to return to the hand prompt).

    Hit any key within 3 seconds for
    alternate CONFIGURATION
 
It is at this point where you have three seconds
(this time can be adjusted in DRIVECFG) to
decide if you want to use the default CONFIG
.SYS, some option within it, or a different-
named CONFIG.SYS. From the CONFIG.SYS example
above, we have a couple of configuration
options.

Press any key to interrupt the boot process. The
message will then change to:

    Select CONFIG.SYS option (A-Z) ->_

Then we can choose {O} (the default configura-
tion), {P} for Programming the NVsRAM, {R} for
configuring a RAM disk (if a RAM card is
installed), or {Z} for loading nothing or doing
anything (good for troubleshooting purposes).

Of course, if you have other configuration
options in your CONFIG.SYS file, here is where
to exercise those options.

For this run, we let it time out and the
computer will use the default CONFIG.SYS,
displaying the message:

    Using default CONFIG.SYS optn.
 
After CONFIG.SYS is executed, the AUTOEXEC.BAT
file is executed and the computer will display
the NVsRAM drive letter: 
 
    J:\>ECHO OFF
    J:\>_

Programming the NVsRAM

As the NVsRAM is read only once it is program-
med, we must discuss the procedures for pro-
gramming the NVsRAM.

When we interrupt the boot process, by pressing
any key at the CONFIG.SYS question, the computer
will replace the message with:

    Select CONFIG.SYS option (A-Z) ->_

Then we can press a key to choose a configur-
ation option. To choose to enable programming
the NVsRAM, we need to press {P}.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Caution:

When the NVsRAM is prepared for programming,
the write protection is removed from the
NVsRAM. The checksum thus becomes changed
and, unless you run CHKSUMEP before rebooting
or shutting down the computer, the NVsRAM will
be reported as corrupt on the next bootup!
You will have to reboot to another device
and run CHKSUMEP before booting again to the
NVsRAM.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The computer will load the EPROMDSK.SYS driver
and update the drive list in the IO.SYS boot
screen to reflect new K: and L: drives:

    K:  512K EPROMDSK/CLOCK (programming)
    L: ST3290      FAT16    261MB LIDEp 0

and below the window, the boot session is
completed when we see the DOS prompts:

    J:\>ECHO OFF
    J:\>_

To program the NVsRAM from the IDE drive L:, we
need to change to the \EPROM directory on the L:
drive and then run our EPROMPGM.BAT file that we
created earlier. The series of commands are:

    J:\>L:
    L:\>CD EPROM{RETURN}
    L:\EPROM>EPROMPGM{RETURN}
 
To program the NVsRAM from the 3-1/2" floppy
drive (preparing this backup disk is explained
shortly), we do not need an EPROM directory,
instead we have our EPROMPGM.BAT file in the
root directory and additional files in the
\EPROMPGM directory. Booting to the floppy,
using the same procedures given above, the
command sequence is simply:

    B:\>EPROMPGM{RETURN}

In either case, the batch file is run and a new
CHECKSUM is generated and also placed on the
NVsRAM.

10



Note: The EPROMPGM.BAT does not need to be run
for minor changes. If you just wanted to add a
file, the NVsRAM is treated as any other drive
letter. Copy the new file to the K: drive and,
when all the changes are completed, run CHKSUMEP
to generate a new Checksum.

Alternate NVsRAM Programming

Once the NVsRAM has been programmed using the
above procedures, there is a set of 3 programs
that are of tremendous assistance in maintaining
the status of the NVsRAM chip.

    EPRDFILE.COM  - Reads all the data stored in
the NVsRAM and stores it in the same directory
as EPTEST.DAT.

When finished running, it reports:

    File Successfully Written from EPROM.
 
and EPTEST.DAT is written to the current
directory. The file is 525Kb so the EPTEST.DAT
command cannot be run from the NVsRAM or 5-1/4"
floppy and will require a healthy chunk of a
3-1/2" floppy!

For that reason, the set of three files are
placed in the \EPROM directory on the IDE drive.

    EPCPFILE.COM  - This command compares the
previously saved EPTEST.DAT file with the NVsRAM
again to ensure they are the same.

When complete, it will hopefully report:

    End of Compare EPROM and File.

If there are any differences, each is reported
as a separate line. For example:

    Found in File 00h in EPROM A0h for
    sector   0 at Offset  645

If the files are completely different, these
reports will scroll seemingly forever on the
screen. Press {CTRL}-{C} to exit.

    EPWRFILE.COM  - This command makes recovery
for a corrupt NVsRAM quick and easy. It will
copy the data file, EPTEST.DAT, which was
automatically generated by the EPROMPGM.BAT
batch file, back into the NVsRAM in the event
the NVsRAM becomes corrupted for some reason
other than internal failure. The NVsRAM does
NOT require to be in programming mode.

Note: There is a write enable jumper located
beside the NVsRAM on the IDE Controller Card.
The pins are not installed and it is presently
enabled by a trace between the two pin holes.
If you wish to disable ALL writes to the NVsRAM,
including EPWRFILE, cut the trace and install
pins to enable writing when necessary.

Creating a Backup Floppy

In spite of all the precautions that we have
built into the IDE Controller Card and NVsRAM
programming, the IDE Card and NVsRAM are criti-
cal to the booting process of the Z-100. If for
some reason, the NVsRAM is erased, or you have
to change it out, it is best to have a bootable
backup disk to be able to reprogram the NVsRAM.

Therefore, once the NVsRAM has been programmed
and is working to your satisfaction, make a
bootable 3-1/2" disk using FORMAT B:/s/v, which
will install IO.SYS, MSDOS.SYS, and COMMAND.COM
on the floppy to make it bootable.

Caution: Running FORMAT /s/v from an NVsRAM
using compressed system files will copy these
compressed system files to the floppy drive.
These will generate an error if DRIVECFG is
subsequently run on the floppy disk.

Note: While a 360K 5-1/4" floppy disk will have
enough space for the critical files and could be
used, it would not be able to contain all the
files to fill the 507K free space on the NVsRAM. 
 
Next, create the \EPROMPGM directory and copy
all the files to it from the IDE drive's
\EPROMPGM directory. Finally, copy the following
files to the root directory on the floppy drive:

  COMMAND.COM   IO.SYS        MSDOS.SYS
  AUTOEXEC.BAT  EPROMPGM.BAT  CONFIG.SYS
  EPROMDSK.SYS  LLIDEHD.EXE   CHKSUMEP.COM 
  EPRDFILE.COM  EPCPFILE.COM  EPWRFILE.COM 
  TESTIDEP.COM

Modify PATH in AUTOEXEC.BAT and modify EPROMPGM
.BAT to load the files from the floppy drive.

Next, copy any additional files as you may
desire into the Root directory on the disk.
This is an emergency disk and you might need
to do any number of actions while trouble-
shooting your situation. So, such files might
include, depending upon your computer configur-
ation:

  ASGNPART.COM  DETECT.COM    DSKCOPY4.COM
  EDLIN.COM     FLAGS.COM     FORMAT.COM
  LOOK.COM      PART.COM      PREP.COM
  SYS.COM       ZDIR.COM      ZFMT207.COM

CAUTION: Remember to leave at least 525Kb of
space for the EPTEST.DAT data file generated by
EPRDFILE during the NVsRAM programming.

Finally, reboot to the floppy and reprogram the
NVsRAM to ensure the floppy disk works as
intended. Label the disk as follows:

    "Emergency IDE NVsRAM Programming Disk"
    "Run EPROMPGM.BAT"
    "Z-DOS v4.06 (Bootable)"

and store it in a safe location.

11



Setting the Clock

Setting the Clock could not be easier.

Note: Since the original publishing of this
article, we have updated the setting of the
NVsRAM clock from the IDECLOCK utility to a
set of four new ICLKxxx utilities.

ICLKSET.COM

To set the NVsRAM Clock, run DOS' DATE and TIME
commands as normal. Next, run ICLKSET without
anything else on the command line. ICLKSET will
then auto Calibrate the clock and set the Date
and Time from the DOS setting. If successful,
the computer will respond with: 
 
    IDE EPROM Clock successfully set from
    MS-DOS date and time.
    Present date/time is (press any key to EXIT):
    Saturday March 26, 2022 13:53:36

If anything else is placed on the command line,
ICLKSET will display a help message and the
present programmed date/time.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ICLKSET Version 4.05

 This utility will set the Dallas DS1647 or the
 TI bq4850Y clock on the LifeLine IDE card in
 accordance with the parameters given.

 There are 4 valid command line parameters:
 ICLKSET /? Will display this help screen.
 ICLKSET{RETURN} will set the NVsRAM clock
 date/time from MS-DOS.
 ICLKSET{SPACE} will display the current date/time.
 ICLKSET off will turn OFF the clock in the NVsRAM.
 This is useful if the clock will not be used for
 a long period of time (years) and sets the OSC
 bit in the seconds register to 1.
 Anything else on the command line, will display
 this message, then the programmed date/time from
 the clock.

 Present date/time is (press any key to EXIT):
 Saturday March 26, 2022 13:56:38

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Pressing any key will exit the routine.

Notes:
  * This utility is meant for use with the
Dallas DS1647 or Texas Instruments BQ4850Y
NVsRAM clock on the “Z-100 LifeLine” IDE Con-
troller Card and sets the Date/Time from the
current MS-DOS Date/Time, if no command line
parameter is given.

  * If the command line parameter is 'off' or
'OFF', the NVsRAM oscillator bit is turned off
to conserve battery power, in the event the
NVsRAM will not be used for a very long period
of time (years), by setting the OSC bit of the
seconds register to 1.

  * Of particular interest is the Read and Write
bits of the Clock Control Register. The Read
bit, when set to one (40h), prevents updating
the registers from the internal clock, so

updates do not disturb the reading. The Write
bit, when set to one (80h), prevents setting the
internal clock from the registers, until the
registers are set to do so. 

  * The NVsRAM clocks are very accurate, aver-
aging +/- 1 minute per month.

  * The TI BQ4850 NVsRAM clock uses a calibra-
tion procedure to fine-tune the accuracy of
their clock. The ICLKCAL.COM utility can be used
to adjust this calibration, if you feel it is
needed.

CAUTION: Do NOT use ICLKCAL on Dallas clocks.
They do not use Calibration and this utility
stalls while waiting for the clock to respond.

ICLKTST.COM

To check the clock date and time, run ICLKTST.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ICLKTST Version 4.05

 This utility will display to the screen the
 current calibration setting and the date/time
 from the Dallas DS1647 or Texas Instruments
 bq4850Y clock on the LifeLine IDE Controller
 Card.
 As the Dallas clock does NOT use calibration,
 It will display 00.
 Anything on the command line will display this
 message.

 Please press any key to exit.

 Current Calibration Setting = + 04

 Saturday March 26. 2022 14:08:22

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note: This utility will display to the screen
the programmed time from the Dallas DS1647 or TI
bq4850Y clock on ONLY the LifeLine IDE Control-
ler Card.

ICLKCAL.COM

To calibrate the clock, run ICLKCAL.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ICLKCAL Version 4.05

 This program reports the current calibration on
 a Texas Instruments bq4850 NVsRAM clock and the
 current deviation in timer tics, then resets the
 clock date/time from DOS.

 CAUTION: Do NOT use on Dallas clocks. They do
 not use calibration and this utility stalls
 while waiting for the clock to respond.

 There are 250,000 timer tics per second; 2.6
 million seconds/month. The reported deviation
 is measured over a two second period.
 The file source code has more information on the
 calculations.

 The Current Calculation setting was + 04.
 Resetting calculation to zero and testing...

12

 Total timer tics deviation = + 07

 Each calibration value is equivalent to 2
 positive and 1 negative time tic in deviation,
 So the new calibration setting is + 04.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The computer will respond with the help message
and then provide the Current Calibration Setting
being used. On the last line, the Day of the
Week, Date, and Time are displayed, with the
time incrementing. For example:

    Current Calibration Setting = + 04.
    Current Wait States = 0.
    Please hit ANY KEY to exit.

    Wednesday, February 14, 2007  08:53:16

Pressing any key will exit the routine.

Note: This program reports the current calibra-
tion on a Texas Instruments BQ4850 NVsRAM clock
and the current deviation in timer tics, then
resets the clock date/time from DOS.

CAUTION: Do NOT use on Dallas clocks. They do
not use Calibration and this utility stalls
while waiting for the clock to respond.

ICLKREG.COM

To view the clock registers, run ICLKREG.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ICLKREG Version 4.05

 This utility will display the top 16 bytes of the
 NVsRAM, the area in NVsRAM memory containing the
 clock registers.
 If the clock is running, the right most 8 bytes
 contain the clock data registers, with byte 9
 incrementing each second.
 The clock data is: 8/ 9/ A/ B/ C/ D/ E/ F/

 Ctl/ ss/ mm/ hr/ wd/ dy/ mo/ yr/

 NOTE: To update the internal clock, first note
 the value of register 8. Next, set register 8 to
 80h to disable writes to the internal clock.
 Change the clock data registers as desired, then
 reset register 8 back to the original value noted
 earlier to write the registers to the clock.
 Writing a number greater than 3F to the control
 register, byte 8, may disable reading or writing
 to the clock!!!

 Input Location to Write (0-F); press {RETURN} to
 exit.

 0 1 2 3 4 5 6 7 8 9 A B C D E F
 00 00 00 00 00 00 00 00 24 58 17 14 07 26 03 22

   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Notes:
  * This utility will display the top 16 bytes
of the NVsRAM, the area in memory containing the
clock registers. If the clock is running, the
rightmost 8 bytes contain the clock data, with
byte 9 incrementing each second.

  * The clock data is:
      8/ 9/ A/ B/ C/ D/ E/ F
    ctl/ss/mm/hr/wd/dy/mo/yr

Where:
  - Location 8 is the control register and
    should not be changed before exiting.
  - Bit 7 (80-FF hex) is the write bit - set
    to 1, it halts clock updates from the
    registers.
  - Bit 6 (40-7F hex) is the read bit - set
    to 1, it prevents clock updates to the
    registers.
  - On the Texas Instruments' NVsRAMs,
    bits 0 thru 4 contain the calibration
    settings. On the Dallas NVsRAMs these
    are not used.

NVsRAM Tests

To check the NVsRAM memory locations, run
NVsRAMck.

Notes:
  * Running the NVsRAMck utility will test all
RAM locations in the NVsRAM device by writing a
value of the user's choice to all locations in
the NVsRAM. It then goes back and looks for
differences.

  * If the clock is running, the clock register
locations are not changed. However, if the clock
is NOT running, all locations are overwritten,
including the clock.

WARNING: Writing any value greater than 40h,
will make the clock unreadable and it will have
to be turned ON and set by ICLKSET!

Monitor ROM NVsRAM Test

ZROM v4.3 is able to test each boot device by
using the {F8} function key. This comes in handy
if you suspect a problem with the NVsRAM on the
LLIDE controller card.

It will perform a checksum and will check it
against the one stored in the NVsRAM when it
was last programmed. If it is different, it
will report an EEPROM Error. If correct, the
test will repeat until you press the {DELETE}
key. To initiate this test, type:

    {F8}{F4}{S}{RETURN}

Upon pressing the {F8} key, the computer screen
will blank and then display the following:

    Default Booting Primary Z207 34pin Unit 0
    Input BOOT string<CR>_

                 TEST COUNT =

    TYPE <DELETE KEY> TO ABORT

As you press the {F4}{S} keys, they are inserted
at the cursor. When you press the {RETURN} key,
a third line is added to the screen: 
 

13



    Booting Secondary EEPROM Unit 0

and the COUNT begins to increment or an error
message is displayed.

Note: As this test is only performing a CRC
check, it will only report the "EEPROM is
Corrupt" message. See the Error Messages listed
below. Reboot in NVsRAM programming mode using
an alternate boot device and run CHKSUMEP.COM,
EPWRFILE.COM, or EPROMPGM.BAT to recover.

TESTIDEP.COM

This utility can be found on the Z-DOS v4.06
CD-ROM in the directory:

    X:Z-DOSv4.06 > LLIDE > NVsRAM > TestPgms

TESTIDEP can be run at any time from the DOS
prompt. Like the test above, it simply calcu-
lates a Checksum and compares it with the stored
value on the NVsRAM. If it was successful, it
reports:

    IDE EEPROM IS OK
 
If not, it reports: 
 
    IDE EEPROM IS CORRUPT
 
Run EPWRFILE.COM as discussed above to recover,
or reboot in NVsRAM programming mode and run
CHKSUMEP.COM or EPROMPGM.BAT.

Known Software Issues

As with any new hardware or software changes,
some incompatibilities have to be expected and
this implementation did not disappoint. The
first problem has already been reported.

It seems that Peachtext 5000 does not recognize
the new IDE drive partitions that are detected
and assigned drive letters during the boot up.
It does recognize the NVsRAM just fine.

Further investigation has shown that it is a
problem with the Peachtext software not being
able to recognize partitions greater in size
than 32 Mb! Peachtext, and probably other
software of the period, never expected dealing
with memory storage greater than 32 Mbs so their
addressing capability is very limited.

The fix is simple enough. While Peachtext and
other applications of the period may be run from
the larger partitions, those partitions that you
wish to use as data disks must be kept smaller
than 32 Mb.

If you find other program applications that have
a similar problem, or if you find another fix,
please contact me at:

z100lifeline@swvagts.com.

14



LLIDE Controller Error Messages

Possible errors that may appear during the Boot
test or during the Boot process include:

Errors: Reasons:

EEPROM is Corrupt Checksums do not match. 
Device Error

NO IO.SYS IO.SYS missing or
corrupt.

Could not find DOS, MSDOS.SYS missing or
disk not a system disk Corrupt.

Bad or missing Command COMMAND.COM missing or
Interpreter corrupt.

ERROR: No LifeLine IDE Drive not detected!
Drives Detected! Check cables & power.

***Driver NOT Drive incompatible with
installed due LLIDE Controller Card.
to prior ERROR***        Try another drive.

Check Drive DS/CS
jumpers.

Drive not listed on Drive incompatible with
IO Boot Screen or LLIDE Controller Card.
Info Wrong. Try another drive.

Check Drive DS/CS
jumpers.

For any error messages involving the NVsRAM,
all errors except mechanical or internal
failure can generally be corrected by running
CHKSUMEP.COM, EPWRFILE.COM, or EPROMPGM.BAT.
See the section on programming the NVsRAM above
for the procedures.

Advantages of an IDE controller

Besides the obvious about adding a high capacity
hard drive to the Z-100 and the declining
reliability and availability of MFM hard drives,
some persons have older Z-100's that never had
the power cables to upgrade to a hard drive
system. This upgrade requires NO additional
power connectors. It DOES require upgrade to
Z-DOS v4.06 and MTR-ROM v4.3, available at
nominal additional cost with the IDE Controller
Board.

A major advantage of the IDE upgrade, is the
greatly reduced power requirements. If you are
replacing an MFM hard drive setup with an IDE
drive setup, instead of powering a data
separator card and a massive Z-217 controller
card with their hefty power requirements, the
new IDE controller requires a small 5 volt
regulator that barely gets warm, and that's the
warmest part on the board, even at 10 MHz!

If the power supply fan noise had been driving
you nuts in the past, there may be a possibility
of finally being able to replace the fan with a
slower or slightly smaller unit, though it is
still not recommended!

Closing

I think I've shown that even the lowly dual-
floppy Z-100 can be easily converted into a hard
working, proud machine with a little labor of
love.

I hope this exercise has helped you to make
an informed decision as to whether you want
to upgrade your Z-100 to this exciting new
capability.

If you have any questions or comments, please
email me at:

z100lifeline@swvagts.com

Cheers,

Steven W. Vagts

15

mailto:z100lifeline@swvagts.com

