
2022

 March 2022

#WEB

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Z-100 LifeLine
IDE Controller

by Steven W. Vagts
Editor, Z-100 LifeLine

Z-100 LifeLine

IDE Controller

The new Z-100 LifeLine IDE Controller Cards have
been in use now for several years without a
single complaint. The board appears to work well
with nearly everything we can throw at it,
including the new Compact Flash (CF) memory
cards, but when I tried the Disk-on-Module (DOM)
memory units, the one I was testing was a bit
flaky - sometimes not recognized correctly. So I
can not recommend those.

Unfortunately, I have sold my last spare card,
so these are no longer available. I am sorry
that you missed out.

This article is intended to document all
features of this great board, in case someone
comes across one on E-bay or from a friend and
has no idea what they have obtained.

And do not miss the article on the First
Operational IDE Controller in the Z-100,
IDE_FirstOperational.PDF, also found on this
Website.

IDE Controller Board FEATURES:

  * Two IDE drive connectors which can each
    have a master and a slave
  * Compact Flash memory cards or Disk On
    Module(DOM) plug-in memory devices can
    replace any or all of the IDE hard drives.
    These are prepared in the same manner as
    their hard drive cousins.

  * A 512Kb non-volatile sRAM chip provides:
- FAST boot code
- Room for other programs for FAST access
- A Real Time Clock recognized by Z-DOS

  * Two NVsRAM LED's and four IDE Drive LED's
    to show drive activity
  * Hardware Breakout Switch
  * Gold-plated S-100 bus connector fingers
 

System Requirements:

The IDE Controller requires a Heath/Zenith
H/Z-100 series computer with:

  * A minimum of 192Kb motherboard RAM
  * A Z-ROM v4.3 monitor ROM
  * Z-DOS v4.06 Operating System

Some limitations are also imposed on the IDE
hard drives:

  * Drives can retain any PC Operating System,
    which could still use:

- a 16-bit FAT (e.g., Windows 9x) or
- 32-bit FAT (e.g., Windows 98SE).

  * Each Z-100 accessible partition will be
    limited to 2 Gbs in size (imposed by the
    maximum 16-bit FAT that would be usable
    by the Z-100)
  * Maximum drive size that could be used with
    the Z-100 will be 137 Gbs, as limited by
    the 28-bit LBA addressing standards before
    ATA/ATAPI-6.
  * We have found that some software
    (e.g., Peachtext 5000) do NOT recognize
    partitions having sizes greater than 32 Mb.
    We recommend creating one or two 30 Mb
    partitions on each drive for use with
    this software.

1



  * The IDE drives will ONLY be recognized by
    Z-DOS v4.06. No previous versions of DOS,
    nor other operating systems, will recognize
    the IDE drives. We hope to modify other
    operating systems to use the IDE drives
    in the future.

Note:  Newer drives, larger than 137 Gbs, are
already on the market that meet the new 48-bit
LBA addressing standard of ATA/ATAPI-6. These
will NOT be supported by the Z-100. This is not
considered a problem because at 2 Gb each, what
is a person going to do with 67 partitions?

 
The Z-100 LifeLine Design Team:

Charles Hett is Hardware Guru
John Beyers  is Software Guru
Steven Vagts is Z-100 LifeLine Editor and
                Project GoFer
 

Project Conception:

The LLIDEHD driver is key to the success of PC
/Z-100 interchangeability, enabling us to retain
the use of our IDE hard drive in a PC and as a
means for transferring data between the PC world
and our Z-100's. This can be accomplished by
simply placing the information on the drive in a
format recognized by both systems.

Further, since we have complete control over all
aspects of doing this from a Z-100's perspec-
tive, it is possible to leave a primary parti-
tion on the IDE drive that would contain the
PC's Operating System (Windows) that would be
completely undisturbed by operation in the
Z-100.

In short, this means that we could use a pro-
perly prepared system drive from a PC, place it
in the Z-100 to work on or transfer data files,
then return with the information for processing
on the PC. In broad terms, this involves
assigning one or more partitions on the IDE
drive for use on the Z-100.

As conceived, there would be three ways of pre-
paring an IDE hard drive for use in the Z-100.
The first, easiest, and preferred method is to
use the PC in which the drive may be used. We
say this because there are so many different
PC's and operating systems. The only way to
ensure troublefree operation in a PC is to
prepare the drive in that machine.

For those less interested in PC interchange-
ability, there would eventually be two methods
of preparing the IDE drive once installed in the
Z-100. One would use a Z-100 version of FDISK.
The other would be a quick and dirty format
similar to that done on a floppy drive. This
last version would not provide any means of
compatibility with a PC.

Both these last two programs are on hold, wait-
ing for someone with the necessary expertise and
time to work on them. In the meantime, we will
stay with the PC procedures.

IDE Devices:

The are several choices for IDE devices that can
be used with your Z-100 LifeLine IDE Controller.
These are discussed in great detail, along with
the necessary preparation procedures, in the
article IDE_FDISK_Prep.pdf on the Website.

The Altera EPM7064SLC84 Chip

The brains behind the IDE Controller is the
Altera EPM7064S 84-pin Field Programmable Logic
Device (FPLD) Chip. Most of the pins of the
Altera chip could be programmed as either inputs
or outputs and it eliminated the need for normal
LS TTL logic to control the IDE functions of the
Controller. It also processed the breakout
switch, controlled the LED indicators, and
controlled the read/write operations of the
NVsRAM chip (memory and Real Time Clock).

Breakout Switch

A breakout switch is located in the extreme
upper right corner of the IDE Controller Board
to generate an NMI (non-maskable interrupt)
signal for breakout. The switch could be pressed
at any time to exit to the monitor-ROM hand
prompt.

Then, to return to the application in progress,
at the hand prompt, press {G}o and {RETURN}
{RETURN}.

The right-most pins on the LED connector can
also be connected to another, optional breakout
switch on a cable that you may locate anywhere
in the Z-100 case.

2



LEDs

The IDE Controller Board came standard with an
LED assembly mounted on an LED connector to
provide indications for NVsRAM and IDE drive
activity. This assembly could be removed and
replaced by your own assembly to mount a bank of
LED’s somewhere on the front panel. These were
very handy for software debugging and discerning
proper IDE card activity.

From the left in the photo, the yellow LED was
the NVsRAM Read indicator. Next was the red
NVsRAM Write indicator. The other four are the
usual activity LEDs for the left IDE1 connector,
master and slave drives, then the right IDE2
connector, master and slave drives.

IDE NVsRAM Preparation:

The heart of the boot up operation on the IDE
Controller Board is the NVsRAM chip, also
commonly referred to as the EEPROM to remain
consistent with the terminology used previously
to describe the EEPROM on the “Z-100 LifeLine”
SCSI Controller Card.

NVsRAM is the acronym for NonVolatile Static
Random Access Memory. This is memory that can be
programmed and then an internal battery in the
chip will hold this programming in memory until
the chip is reprogrammed or erased.

The NVsRAM chosen for distribution was the
Texas Instruments BQ4850YMA, a 512Kb NVsRAM
(non-volatile static RAM) model with real time
clock. The Dallas DS1647Y model has similar
capabilities and is a direct replacement, if
necessary. While these models use only 32 pins,
the 36-pin socket was installed to allow using
the larger 1024Kb models from both companies.

However, if these 1024Kb models include real
time clocks, additional hardware and software is
required to process this capability. Some clock
models include alarms and wakeup capability!

CAUTION:  When installing the 32-pin NVsRAMs,
ALWAYS leave the four empty pins of the socket
to the LEFT! A jumper, located just above the
NVsRAM socket, is also required to be modified
and jumpered to accommodate the 36-pin units.

Programming the chip is not difficult, but for
frequent changes, it can be a pain, so I devel-
oped a batch file to make programming somewhat
easier. It has been distributed with the other
software for the controller boards, but will
also be listed later.

First off, memory in the NVsRAM was limited.
Depending upon the model, it could be less than
64K, 128K, 256K, 512K, or more than 1Meg. With
the growing needs of Z-DOS boot files for space,
it was becoming increasingly difficult to fit
all the desired files on a standard 360K, 5-1/4"
floppy. So, due to space and circuit require-
ments, we settled on a 512K NVsRAM with an
internal clock to best suit our needs.

Everything fit comfortably on the 512 NVsRAM,
with plenty of room for additional files.

Z-100 Boot Process:

We are used to booting to a hard drive or a
floppy drive that has the DOS commands in a
directory on the same drive.

Now, with the NVsRAM on the IDE Controller
controlling the boot process, we either place
all the DOS commands in the NVsRAM or have some
means to have any request for a DOS command
refer to the right drive. In the past, this had
always been controlled by use of the PATH
command in the AUTOEXEC.BAT file.

For example, the AUTOEXEC.BAT file in my
computers generally look like:

ECHO Off
ASGNPART 0:Z-DOS4 E:
PATH=E:\;E:\DOS
SET ZDIR=/F
PROMPT $P$G

3



With this simple AUTOEXEC.BAT file executed
during boot up, any DOS command on the command
line would be directed to look in the root
directory of the MFM hard drive unit 0, in the
partition labeled Z-DOS4, with the drive letter
E: assigned to it and if not found there, it
would look next in the \DOS directory.

As you may recall, DRIVECFG assigns drive
letters to the various floppy and hard drives
on the computer using Z-DOS v4.

On my computers, for standardization among the
many different computer configurations that I
have around the shop, I generally assign my
drive letters as:

  - A: thru D: to the floppy drives to maintain
    compatibility with the other operating
    systems
  - E: thru H: to the MFM hard drive partitions
  - I: is my imaginary drive (map as drive A:)
  - J: automatically assigned by IO.SYS to the
    EEPROM on either the LLSCSI board or the
    LLIDE board, if either is detected.

The next available drive letters (beginning with
K:) are then assigned by IO.SYS to any drive and
their partitions found on either LLSCSI or LLIDE
board.

This has worked out well for me in the past.

Using the AUTOEXEC.BAT configuration above,
however, now generates an error if the MFM hard
drive is not attached.

    Physical Sector Zero is not readable,
    unit does not exist.

So, we need to configure the AUTOEXEC.BAT file
on the NVsRAM to refer to the proper drive for
executing DOS commands. If there will NOT be any
MFM hard drive system on the computer, change
the AUTOEXEC.BAT file to:

ECHO Off
PATH=J:\;K:\;K:\DOS
SET ZDIR=/F
PROMPT $P$G

If you intend to leave an MFM hard drive in the
system, but will be booting to the NVsRAM as the
primary drive, you may wish to use something
such as:

ECHO Off
ASGNPART 0:Z-DOS4 E:
PATH=J:;E:\;E:\DOS;K:\;K:\DOS
SET ZDIR=/F
PROMPT $P$G

Obviously, the object is to let the computer
know where to find the files you wish to run.

Note: The IDE driver will automatically recog-
nize all partitions on each of up to four IDE
drives and assign them drive letters, until the
last drive letter is used.

Note: All the above drive configurations have
assumed that four partitions have been set aside
for MFM hard drive use. If you do not intend to
ever worry about an MFM hard drive again, just
delete those drive letters using DRIVECFG. The
IDE driver will adjust the IDE drive letters
accordingly.

We have one last complication to address, and I
saved it for last.

The IDE driver is configured to add a different
drive letter to the NVsRAM when it is being
programmed, and this causes the IDE drives to
bump down to the next available drive letter
after this new (programming) drive is listed.

For example, the normal IO.SYS boot screen will
list the drives as configured by DRIVECFG and
others found as:

    A: LOW Den.  48tpi 5 1/4"  34 Z207p 0
    B: DUL Den. 135tpi 3 1/2"  34 Z207p 1
    C: LOW Den.  48tpi 5 1/4"  34 Z207p 2
    D: LOW Den.  48tpi 5 1/4"  34 Z207p 3
    E: Fixed Disk Partition       Z217p
    F: Fixed Disk Partition       Z217p
    G: Fixed Disk Partition       Z217p
    H: Fixed Disk Partition       Z217p
    I: Imaginary Drive mapped to A:
    J: EEPROM on IDE  LifeLine Board  s
    K: ST3290      FAT16    261MB LIDEp 0

As one of several protection methods against
accidently programming, or inadvertently chang-
ing the NVsRAM programming, we felt it best to
only enable programming the NVsRAM by loading a
separate driver, EPROMDSK.SYS during the boot
process.

Therefore, CONFIG.SYS, which we will describe in
great detail in a moment, has a separate section
that is enabled to load this driver only when we
specifically ask for it.

So, when we want to program the NVsRAM, the
NVsRAM is actually enabled for programming and
the IO.SYS boot screen becomes:

    A: LOW Den.  48tpi 5 1/4"  34 Z207p 0
    B: DUL Den. 135tpi 3 1/2"  34 Z207p 1
    C: LOW Den.  48tpi 5 1/4"  34 Z207p 2
    D: LOW Den.  48tpi 5 1/4"  34 Z207p 3
    E: Fixed Disk Partition       Z217p
    F: Fixed Disk Partition       Z217p
    G: Fixed Disk Partition       Z217p
    H: Fixed Disk Partition       Z217p
    I: Imaginary Drive mapped to A:
    J: EEPROM on IDE  LifeLine Board  s
    K:  512K EPROMDSK/CLOCK (programming)
    L: ST3290      FAT16    261MB LIDEp 0

CONFIG.SYS is controlling all of this and for
those of you who are still using the old three
or four line CONFIG.SYS, you will have to get
used to this new expanded version.

4



The new CONFIG.SYS is fully explained in great
detail in the article, CONFIG4.pdf, on our
Website. It also includes some examples.

While CONFIG.SYS may appear very complex, it
really is not so bad once you are familiar with
the outline structure.

The following is a much abbreviated version with
all the comment lines still included to help you
along. The version you use for your computer can
be edited down much further. I recommend not
eliminating all the comments, however, to ease
in making changes at a later date.

CONFIG.SYS contains:
Rem   SECTION 1 - Common Commands
; lines always included
Comment=   ;
; Permit comments on line after command
Break=On      ; Check for CTRL-C
Buffers=32,8  ; 32 buffers, 8 sector R/W
Files=30      ; 30 open files allowed
LastDrive=Z   ; Permit 26 drives

;     SECTION 2 - Custom Commands
; Options defined by a letter:
:0   ; Default Selection - No key pressed
#0   ; Include Common Block LLIDEHD
:P   ; NVsRAM Programming
device=EPROMDSK.SYS /256/W0
#0   ; Also include LLIDEHD after EPROMDSK
:R   ; RAM Disk Installed
device=Z205DSK.SYS
:Z   ; Last option ID - don't load anything
; Last option id - don't do anything
::   ; Section 3 - Condensed Commands
; This is where common # blocks are defined:
#0   ; Common block 0
device=LLIDEHD.EXE /F   ; IDE device driver
Install=SHARE.EXE  ; Drive Partition >32Mb
##   ; Section 4 - Secondary Custom Commands
; These are lines common to all options.
^Z   (Crtl-Z marks end of file)

CONFIG.SYS Section Descriptions:

Section 1 lists the commands that are common to
all options. Many of these commands may be moved
to the individual options to accommodate special
requirements of certain applications.

For example: a particular application may
require more buffers than usual; so you would
list Buffers under each option in Section 2 and
specify the number for each application. 
 
Section 2 is where special drivers are loaded
for their particular application. If a parti-
cular driver is needed under several options,
it could be placed in Section 3 as a common
block, defined as a pound sign(#) and a number.

For example; the LLIDEHD driver will be required
in most options. Rather than listing it indi-
vidually under each, #0 is a marker placed to
define those commands in Common Block #0.

Section 3 lists and defines all the Common
Blocks. These blocks, defined with a pound (#)
sign, may be used in multiple individual options
given in Section 2.

Section 4 is provided for any command that has
to be executed after all the drivers are loaded.
Finally, finish editing the file with a CTRL-Z
as an End-of-File marker, if needed.

Note the INSTALL=SHARE.EXE line in the CONFIG
.SYS file. SHARE is necessary and should be
installed any time you are operating a system
with a drive containing one or more partitions
greater than 32 Mb.

The deal is that old "File Control Blocks" or
"FCB's" cannot hold pointer information in its
"Reserved Fields", on files located on disk
locations past 32 Mbs. FCB's will only work
correctly as long as a file is physically
located within the first 32 Mbs of a partition's
start. If part of the file lies past this 32 Mb
range, the FCB does not complain or generate an
error, it just rolls the pointer value over,
through zero, and gives DOS a new garbage value
as an internal disk pointer. The next disk read
gives junk to your program, and THE NEXT WRITE
CORRUPTS YOUR DISK!

Without going into detail, the reason SHARE is
the solution is because it was already doing the
required fix for a different reason in small
partitions. For a more detailed explanation, see
the SHARE help screen in the Z-DOS v4 help
directory.

Now we have all the parts in place. The only
other change to worry about is the Boot command.

ROM v4.3 Boot Up Sequence

Unless you have been using Autoboot all your
life, you are already familiar with most of the
Boot options. Remember, Autoboot can be disabled
by setting section 3 of S101 on the motherboard
to ON or 0 (toward the rear of the computer).

You can also get to the hand prompt by pressing
the {DELETE} key at which time the computer will
respond with "Boot Abort" and the hand prompt. 
 
Note: The version 4.3 Monitor ROM now displays
the Help screen before the hand prompt. Other-
wise, it will display an error message and the
hand prompt as in earlier ROMs. 
 
Unless you have played with the LifeLine SCSI
board, you are probably not familiar with all
the changes to the Boot options since version
3.0 of the ROM. So, let me briefly cover these
Boot options.

The Boot command will boot the Disk Operating
System from a diskette, MFM hard drive, a SCSI
drive from a Z-317 controller card, or a “Z-100
LifeLine” SCSI or IDE Controller Card.

5



The Boot Syntax is:

    Boot [F1-4][Unit#][S][:partname]

Where: 
    F1    specifies a drive attached to the
          Z-207 34-pin connector and may be
          a 5-1/4" or 3-1/2" floppy drive.
    F2    specifies a drive attached to the
          Z-207 50-pin connector and may be
          a 3-1/2" or 8" floppy drive.
    F3    specifies a hard drive; either an
          MFM drive attached to a Z-217 or
          a SCSI drive attached to a Z-317
          controller.
    F4    specifies a bootable EEPROM on the
          LLSCSI controller board or, when
          used with the {S}, an NVsRAM on
          the LLIDE controller board.

    Unit# specifies the drive unit number as
          set on the drive's DS (Drive Select)
          jumpers. This may be 0, 1, 2, or 3.

    S     specifies a secondary floppy or
          hard drive controller; 
          it also specifies the NVsRAM on
          the LLIDE Controller Card

    :partname  specifies the partition name
               To boot from on a hard drive.

To manually boot the computer, press the {B}
key. With the version 4.3 Monitor ROM, the
computer will now display the default boot
device as set by the S101 switches on the
motherboard.

On my computer, the display is:

    Default Booting Primary Z207 34pin Unit 0
    Input BOOT string<CR>_

and the computer will wait for you to type in
more information.

If you press the {RETURN} key, the computer will
begin to boot the operating system from the
default device, drive zero, as determined by the
setting of switch S101 on the motherboard.

This device can be a 34-pin floppy drive unit
zero, a 50-pin floppy drive unit zero, the first
MFM hard drive, or the bootable EEPROM on the
LLSCSI board.

If you press the {F1}, {F2}, {F3}, or {F4} key
followed by the {RETURN} key, the computer will
boot from unit zero of a specific device without
regard to the settings of S101 on the mother-
board.

The monitor ROM can support up to four drives of
each type. Therefore, you can boot from any
drive by typing its unit number, 0, 1, 2, or 3
after the {F1}, {F2}, or {F3}. If the device is
not present or is faulty, after about 30 seconds
a "Device Error" message will appear on the
screen.

You can boot the computer from any partition on
the Z-317 SCSI drive or MFM hard drive if there
is an operating system on it. To do this, type:

    {B}{F3}{:partname}{RETURN}

The screen will display:

    Default Booting Primary Z207 34pin Unit 0
    Input BOOT string<CR>f3:(partition name)

The optional {S} key is used to boot from the
Secondary device (the second Z-207 floppy disk
controller card, second hard drive controller
card, or from the LLIDE controller card (the
LLSCSI controller card is the primary card).
If the device is not present, or is faulty,
after about 30 seconds a "Device Error" message
will be displayed.

To Boot from the LLIDE controller card, you must
type:

    {B}{F4}{S}

The computer will display: 
 
    Default Booting Primary Z207 34pin Unit 0 
    Input BOOT string<CR>f4S

IO.SYS Boot Screen
 
The Boot sequence begins by displaying the
IO.SYS Boot Screen. This screen looks very
similar to the screen displayed during the
DRIVECFG configuration process. It lists the
MS-DOS Version Number and BIOS Version Number
and then all the drives configured by DRIVECFG
in a display window (an example of my screen was
shown earlier). In the bottom of the window,
more system information is displayed:

    MTR ROM V4.x, xxxK RAM, xxK COLOR Video,
      CPU, and x.xxxx MHz CPU Speed.

Below the window, messages appear indicating the
status of the normal boot process. These
messages are:

    ** Initializing Motherboard Parity **

This message only appears on a power-up (cold)
boot. The parity is not checked on a warm boot
(when you press the breakout switch or {CTRL}-
{RESET} to return to the hand prompt).

    Hit any key within 3 seconds for
    alternate CONFIGURATION
 
It is at this point where you have three seconds
(this time can be adjusted in DRIVECFG) to
decide if you want to use the default CONFIG
.SYS, some option within it, or a different-
named CONFIG.SYS. From the CONFIG.SYS example
above, we have a couple of configuration
options.

Press ANY key to interrupt the boot process.
The message will then change to:

6



    Select CONFIG.SYS option (A-Z) ->_

Then we can choose {O} (the default configura-
tion), {P} for Programming the NVsRAM, {R} for
configuring a RAM disk (if a RAM card is
installed), or {Z} for loading nothing or doing
anything (good for troubleshooting purposes).

Of course, if you have other configuration
options in your CONFIG.SYS file, here is where
to exercise those options.

For this run, we let it time out and the
computer will use the default CONFIG.SYS,
displaying the message:

    Using default CONFIG.SYS optn.
 
After CONFIG.SYS is executed, the AUTOEXEC.BAT
file is executed and the computer will display
the NVsRAM drive letter: 
 
    J:\>ECHO OFF
    J:\>_

Programming the NVsRAM

As the NVsRAM is ‘READ ONLY’ once it is
programmed, we must discuss the procedures
for programming the NVsRAM.

When we interrupt the boot process by pressing
any key at the CONFIG.SYS question, the computer
will replace the message with:

    Select CONFIG.SYS option (A-Z) ->_

Then we can press a key to choose a configur-
ation option. To choose to enable programming
the NVsRAM, we need to press {P}.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CAUTION:

When the NVsRAM is prepared for programming,
the write protection is removed from the
NVsRAM. The checksum thus becomes changed
and, unless you run CHKSUMEP before rebooting
or shutting down the computer, the NVsRAM will
be reported as corrupt on the next bootup!
You will have to reboot to another device
and run CHKSUMEP before booting again to the
NVsRAM.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The computer will load the EPROMDSK.SYS driver
and update the drive list in the IO.SYS boot
screen to reflect new K: and L: drives:

    K:  512K EPROMDSK/CLOCK (programming)
    L: ST3290      FAT16    261MB LIDEp 0

and below the window, the boot session is
completed when we see the DOS prompts:

    J:\>ECHO OFF
    J:\>_

EPROMPGM.BAT Batch File

The batch file, EPROMPGM.BAT, is used to
actually program the NVsRAM on the IDE control-
ler card. EPROMPGM.BAT copies all the files that
you wish to transfer to the NvsRAM.

For my case, I created an \EPROMPGM directory on
my MFM hard drive and copied all the files that
I wanted on the NvsRAM to that directory. These
could also be copied to a floppy drive, just
change the batch file to use the correct source
location. 

The files that I wanted were:
  COMMAND.COM   IO.SYS        MSDOS.SYS
  AUTOEXEC.BAT  EPROMPGM.BAT  CONFIG.SYS
  EPROMDSK.SYS  LLIDEHD.EXE   CHKSUMEP.COM 
  EPRDFILE.COM  EPCPFILE.COM  EPWRFILE.COM 

Next, copy any additional files as you may
desire into the Root directory on the disk.
  ASGNPART.COM  DETECT.COM    DSKCOPY4.COM
  EDLIN.COM     FLAGS.COM     FORMAT.COM
  LOOK.COM      PART.COM      PREP.COM
  SYS.COM       ZDIR.COM      ZFMT207.COM

CAUTION: If you are using a large capacity
floppy, remember to leave at least 525Kb of
space for the EPTEST.DAT data file generated
by EPRDFILE during the NVsRAM programming.

Modify PATH in AUTOEXEC.BAT and modify EPROMPGM
.BAT to load the files from the floppy drive.

The EPROMPGM.BAT file is already loaded on any
IDE device that I prepared, usually in the
EPROM0 (without MFM hard drive configuration)
or EPROM1 (with MFM hard drive configuration)
directories. It is also located on the Z-DOS
v4.06 CD-ROM.

A simplified version is also listed here.

EPROMPGM.BAT
ECHO.
ECHO Also Remember: Any time that the EPROM
     is placed in Program
ECHO Mode, the present checksum is destroyed
     and the EPROM is no
ECHO longer bootable, whether the EPROM was
     programmed or not.
ECHO.
ECHO       Once again, ensure the EPROM is

    drive  p %1  q.
ECHO Type {CTRL}-{C} to exit or
PAUSE
ECHO Copying IO.SYS, MSDOS.SYS, & COMMAND.COM
COPY IO.SYS %1/v
COPY MSDOS.SYS %1/v
COPY COMMAND.COM %1/v
ECHO Copying CONFIG.SYS, EPROMDSK.SYS, and
     LLIDEHD.EXE
COPY CONFIG.SYS %1/v
COPY EPROMDSK.SYS %1/v
COPY LLIDEHD.EXE %1/v
ECHO Copying AUTOEXEC.BAT, SYS.COM, &
     DRIVECFG.COM
COPY AUTOEXEC.BAT %1/v
COPY SYS.COM %1/v
COPY DRIVECFG.COM %1/v

7



ECHO Copying ASGNPART, DATETIME, DEBUG,
     EDLIN, FC, & FLAGS
COPY ASGNPART.COM %1/v
COPY DATETIME.COM %1/v
COPY DEBUG.COM %1/v
COPY EDLIN.COM %1/v
COPY FC.EXE %1/v
COPY FLAGS.COM %1/v
ECHO Copying FORMAT, LOOK, SETLPS, XCOPY, & ZDIR
COPY FORMAT.COM %1/v
COPY LOOK.COM %1/v
COPY SETLPS.COM %1/v
COPY XCOPY.EXE %1/v
COPY ZDIR.COM %1/v
ECHO Copying CHKSUMEP and EPROMPGM.BAT
COPY CHKSUMEP.COM %1/v
COPY EPROMPGM.BAT %1/v
ECHO Copying SHARE and ICLK??? utilities
COPY SHARE.EXE %1/v
COPY ICLK????.COM %1/v
ECHO Copying EPRDFILE, EPCPFILE and EPWRFILE
COPY EP??FILE.COM %1/v
CHKSUMEP
ECHO  EPROM Programming Completed.
GOTO Y
:X
ECHO This Batch File requires a drive letter
     filespec be added
ECHO for the EPROM...  For example: EPROMPGM K:
ECHO.
ECHO              p EPROM programming NOT
     completed.  q
:Y
ECHO.
ECHO Remember to run CHKSUMEP after making
     any other EPROM changes.

Description:
EPROMPGM must be invoked with a drive letter
(colon not needed) for the NVsRAM. If the drive
letter is not included, you will receive the
error at “Y”.

WARNING: Ensure the drive letter is correct, or
you may erase the wrong drive!!

The COPY commands copy the system files to the
NVsRAM, followed by all the files from the
\EPROMPGM directory on the IDE drive. Adjust the
COPY files as necessary for your needs.

Note: The usable size of the NVsRAM is presently
limited to 507K. So ensure the files in the
\EPROMPGM directory do not exceed this amount,
less the size of the system files.

CHKSUMEP is automatically run to calculate the
checksum and place that on the NVsRAM.

Once completed, additional files can be copied
to the NVsRAM manually, but remember to run
CHKSUMEP again and last to validate the pro-
gramming.

I also recommend running EPRDFILE last to save a
data file EPTEST.DAT on the default drive (if it
has sufficient space) to save the programming in
a backup data file. Upon rebooting, the NVsRAM
is ready for use.

To program the NVsRAM from the IDE drive L:, we
need to change to the \EPROM directory on the L:
drive and then run our EPROMPGM.BAT file that we
created earlier. The series of commands are:

    J:\>L:
    L:\>CD EPROM{RETURN}
    L:\EPROM>EPROMPGM{RETURN}
 
To program the NVsRAM from the 3-1/2" floppy
drive (preparing this backup disk is explained
shortly), we do not need an EPROM directory,
instead we have our EPROMPGM.BAT file in the
root directory and additional files in the
\EPROMPGM directory. Booting to the floppy,
using the same procedures given above, the
command sequence is simply:

    B:\>EPROMPGM{RETURN}

In either case, the batch file is run and a new
CHECKSUM is generated and also placed on the
NVsRAM.

Note: The EPROMPGM.BAT does not need to be run
for minor changes. If you just wanted to add a
file, the NVsRAM is treated as any other drive
letter. Put the NVsRAM in programming mode, then
COPY the new file to the K: drive and, when all
the changes are completed, run CHKSUMEP to
generate a new Checksum.

Alternate NVsRAM Programming

Once the NVsRAM has been programmed using the
above procedures, there is a set of 3 utilities
that are of tremendous assistance in maintaining
the status of the NVsRAM chip.

    EPRDFILE.COM  - Reads all the data stored in
the NVsRAM and stores it in the same directory
as EPTEST.DAT.

When finished running, it reports:

    File Successfully Written from EPROM.
 
and EPTEST.DAT is written to the current
directory. The file is 525Kb so the EPTEST.DAT
command cannot be run from the NVsRAM or 5-1/4"
floppy and will require a healthy chunk of a
3-1/2" floppy!

For that reason, the set of three files are
placed in the \EPROM directory on the IDE drive.

    EPCPFILE.COM  - This utility compares the
previously saved EPTEST.DAT file with the NVsRAM
again to ensure they are the same.

When complete, it will hopefully report:

    End of Compare EPROM and File.

If there are any differences, each is reported
as a separate line. For example:

    Found in File 00h in EPROM A0h for
    sector   0 at Offset  645

8



If the files are completely different, these
reports will scroll seemingly forever on the
screen. Press {CTRL}-{C} to exit.

    EPWRFILE.COM  - This utility makes recovery
for a corrupt NVsRAM quick and easy. It will
copy the data file, EPTEST.DAT, back into the
NVsRAM in the event the NVsRAM becomes corrupted
for some reason other than internal failure.
The NVsRAM does NOT require to be in programming
mode.

Note: For any of these commands, you can change
the name of the NVsRAM image file by adding the
new file name as an argument to the command.
For example, using the command:

    EPRDFILE EPTEST2.DAT{RETURN}

will create an image file, EPTEST2.DAT. And the
command:

    EPWRFILE EPTEST2.DAT{RETURN}

will program the NVsRAM from that file.

Note: There is a write enable jumper located
beside the NVsRAM on the IDE Controller Card.
The pins are not installed and it is presently
enabled by a trace between the two pin holes.
If you wish to disable ALL writes to the NVsRAM,
including EPWRFILE, cut the trace and install
pins to enable writing when necessary.

Creating a Backup Floppy

In spite of all the precautions that we have
built into the IDE Controller Card and NVsRAM
programming, the IDE Card and NVsRAM are criti-
cal to the booting process of the Z-100. If for
some reason, the NVsRAM is erased, or you have
to change it out, it is best to have a bootable
backup disk to be able to reprogram the NVsRAM.

Therefore, once the NVsRAM has been programmed
and is working to your satisfaction, create a
bootable, high capacity (the standard 360Kb, 48
tpi, 5" drive will not work) backup disk.

This floppy disk would contain the files neces-
sary to reprogram the NVsRAM using either method
described above (i.e., using EPROMPGM.BAT or
using the image file, EPTEST.DAT).

CAUTION: Whatever disk you use, remember to
leave at least 525Kb of space for the EPTEST.DAT
data file generated by EPRDFILE after the NVsRAM
programming. Obviously, it will not fit on the
360K, 48 tpi normal floppy.

Note: A 360K 5-1/4" floppy disk will have enough
space for the critical files and could be used
to reprogram the NVsRAM using the EPROMPGM.BAT
batch file method. 

CAUTION: When reprogramming the NVsRAM using
EPTEST.DAT, the file on an IDE Device (CF card
or IDE drive) partition can NOT be used. You
must use another boot device, such as an MFM
or SCSI hard drive, or floppy drive to run
EPWRFILE.

If you attempt to run EPWRFILE from an IDE
partition, the file will appear to reprogram the
NVsRAM, and will even report “EPROM successfully
written from image file”. However, if you check
the programming using EPCPFILE, you will find
that the programming was NOT changed. AND if you
attempt to boot from it, the NVsRAM will still
report being corrupt!

Note: Even booting to a Z-DOS v4 floppy and
changing to an IDE partition to run EPWRFILE
will not work.

This places those with only a 5" 48 tpi floppy
drive with no easy way to reprogram the NVsRAM,
because the EPTEST.DAT file is too large to fit!
They could still use the Backup Floppy (but
without the EPTEST.DAT file) and would need to
use the manual reprogramming method (using
EPROMPGM.BAT) as described above.

Only those who have installed a 96 tpi 5" drive,
an 8" drive, or a 3.5" drive would have the room
necessary to copy the NVsRAM utilities and the
524 Kbyte EPTEST.DAT file on a floppy disk.

If you have large capacity floppy capability, I
highly recommend that you create an emergency
backup bootable floppy disk that contains the
NVsRAM utilities and the EPTEST.DAT file for
NVsRAM reprogramming purposes. I recommend
creating this Work Disk, even if you are using
another hard drive system, such as the normal
MFM Winchester.

Every purchase of the LLIDE Controller board
included the bootable 5" floppy disk, “Z-DOS
4.06 IDE Controller Utilities” or “Z-DOS v4.06
For IDE Setup”. This disk included all the files
necessary for most NVsRAM functions, except the
EPTEST.DAT files. These were placed on any IDE
device that I may have programmed as a service
to new purchasers of the IDE Controller.

If you did not receive any IDE device from me,
you can still create your own EEPROM/NVsRAM
Working Disk, as follows:

Create a spare bootable disk for whatever floppy
disk system that you will be using; 8", 96 tpi
5", or 3". Run the command; FORMAT B:/s/v, which
will install IO.SYS, MSDOS.SYS, and COMMAND.COM
on the floppy to make it bootable.

Locate the bootable 5" floppy disk, “Z-DOS 4.06
IDE Controller Utilities” (or similar) and copy
all the following files to your new IDE Work
Disk: 

AUTOEXEC.BAT   CHKSUMEP.COM
COMMAND.COM    CONFIG.SYS
DRIVECFG.COM   EDLIN.COM
EPCPFILE.COM   EPRDFILE.COM
EPWRFILE.COM   EPROMPGM.BAT
FC.EXE         FLAGS.COM

9



FORMAT.COM     LOOK.COM
ICLKCAL.COM    ICLKREG.COM
ICLKSET.COM    ICLKTST.COM
LLIDEHD.EXE    SETLPS.COM
IO.SYS         MSDOS.SYS
README0.DAT    SHARE.EXE
XCOPY.EXE      ZDIR.COM

Locate the directories, EEPROM0 (for NO MFM
drives) or EEPROM1 (with MFM hard drives) that I
included on any IDE device that I programmed for
you and copy the appropriate EPTEST.DAT file to
the new Work Disk.

Note: If you do not have these files, or cannot
locate them, boot to the new Work Disk, or
change the default drive to the drive your Work
Disk is in, and run the command EPRDFILE. A new
EPTEST.DAT image file will be created from the
current NVsRAM programming and saved to your
Work Disk for future use.

To check the programming of the NVsRAM, just run
the command EPCPFILE EPTEST.DAT.

To reprogram the NVsRAM, simply run the command
EPWRFILE EPTEST.DAT.

Finally, reboot to the floppy and reprogram the
NVsRAM to ensure the floppy disk works as
intended. Label the disk similar to:

    "Emergency IDE NVsRAM Programming Disk"
    "Run EPROMPGM.BAT"
    "Z-DOS v4.06 (Bootable)"

and store it in a safe location.

Setting the Clock

Note: Since the original publishing of this
article, we have updated the setting of the
NVsRAM clock from the IDECLOCK utility to a
set of four new ICLKxxx utilities.

ICLKSET.COM

To set the NVsRAM Clock, run DOS' DATE and TIME
commands as normal. Next, run ICLKSET without
anything else on the command line. ICLKSET will
then auto calibrate the clock and set the date
and time from the DOS setting. If successful,
the computer will respond with: 
 
    IDE EPROM Clock successfully set from
    MS-DOS date and time.
    Present date/time is (press any key to EXIT):
    Saturday March 26, 2022 13:53:36

If anything else is placed on the command line,
ICLKSET will display a help message and the
present programmed date/time.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ICLKSET Version 4.05

 This utility will set the Dallas DS1647 or the
 TI bq4850Y clock on the LifeLine IDE card in
 accordance with the parameters given.

 There are 4 valid command line parameters:
 ICLKSET /? Will display this help screen.
 ICLKSET{RETURN} will set the NVsRAM clock
 date/time from MS-DOS.
 ICLKSET{SPACE} will display the current date/time.
 ICLKSET off will turn OFF the clock in the NVsRAM.
 This is useful if the clock will not be used for
 a long period of time (years) and sets the OSC
 bit in the seconds register to 1.
 Anything else on the command line, will display
 this message, then the programmed date/time from
 the clock.

 Present date/time is (press any key to EXIT):
 Saturday March 26, 2022 13:56:38

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Pressing any key will exit the routine.

Notes:
  * This utility is meant for use with the
Dallas DS1647 or Texas Instruments BQ4850Y
NVsRAM clock on the “Z-100 LifeLine” IDE Con-
troller Card and sets the Date/Time from the
current MS-DOS Date/Time, if no command line
parameter is given.

  * If the command line parameter is 'off' or
'OFF', the NVsRAM oscillator bit is turned off
to conserve battery power, in the event the
NVsRAM will not be used for a very long period
of time (years), by setting the OSC bit of the
seconds register to 1.

  * Of particular interest is the Read and Write
bits of the Clock Control Register. The Read
bit, when set to one (40h), prevents updating
the registers from the internal clock, so
updates do not disturb the reading. The Write

10



bit, when set to one (80h), prevents setting the
internal clock from the registers, until the
registers are set to do so. 

  * The NVsRAM clocks are very accurate, aver-
aging +/- 1 minute per month.

  * The TI BQ4850 NVsRAM clock uses a calibra-
tion procedure to fine-tune the accuracy of
their clock. The ICLKCAL.COM utility can be used
to adjust this calibration, if you feel it is
needed.

CAUTION: Do NOT use ICLKCAL on Dallas clocks.
They do not use Calibration and this utility
stalls while waiting for the clock to respond.

ICLKTST.COM

To check the clock date and time, run ICLKTST.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ICLKTST Version 4.05

 This utility will display to the screen the
 current calibration setting and the date/time
 from the Dallas DS1647 or Texas Instruments
 bq4850Y clock on the LifeLine IDE Controller
 Card.
 As the Dallas clock does NOT use calibration,
 It will display 00.
 Anything on the command line will display this
 message.

 Please press any key to exit.

 Current Calibration Setting = + 04

 Saturday March 26. 2022 14:08:22

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note: This utility displays the programmed time
from the Dallas DS1647 or TI bq4850Y clock.

ICLKCAL.COM

To calibrate the clock, run ICLKCAL.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ICLKCAL Version 4.05

 This program reports the current calibration on
 a Texas Instruments bq4850 NVsRAM clock and the
 current deviation in timer tics, then resets the
 clock date/time from DOS.

 CAUTION: Do NOT use on Dallas clocks. They do
 not use calibration and this utility stalls
 while waiting for the clock to respond.

 There are 250,000 timer tics per second; 2.6
 million seconds/month. The reported deviation
 is measured over a two second period.
 The file source code has more information on the
 calculations.

 The Current Calculation setting was + 04.
 Resetting calculation to zero and testing...

 Total timer tics deviation = + 07

 Each calibration value is equivalent to 2
 positive and 1 negative time tic in deviation,
 So the new calibration setting is + 04.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The computer will respond with the help message
and then provide the Current Calibration Setting
being used. Pressing any key will exit the
routine.

CAUTION: This program reports the current cali-
bration on a Texas Instruments BQ4850 NVsRAM
clock and the current deviation in timer tics.
Do NOT use on Dallas clocks. They do not use
Calibration and this utility stalls while
waiting for the clock to respond.

ICLKREG.COM

To view the clock registers, run ICLKREG.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 ICLKREG Version 4.05

 This utility will display the top 16 bytes of the
 NVsRAM, the area in NVsRAM memory containing the
 clock registers.
 If the clock is running, the right most 8 bytes
 contain the clock data registers, with byte 9
 incrementing each second.
 The clock data is: 8/ 9/ A/ B/ C/ D/ E/ F/

 Ctl/ ss/ mm/ hr/ wd/ dy/ mo/ yr/

 NOTE: To update the internal clock, first note
 the value of register 8. Next, set register 8 to
 80h to disable writes to the internal clock.
 Change the clock data registers as desired, then
 reset register 8 back to the original value noted
 earlier to write the registers to the clock.
 Writing a number greater than 3F to the control
 register, byte 8, may disable reading or writing
 to the clock!!!

 Input Location to Write (0-F); press {RETURN} to
 exit.

 0 1 2 3 4 5 6 7 8 9 A B C D E F
 00 00 00 00 00 00 00 00 24 58 17 14 07 26 03 22

   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Notes:
  * The rightmost 8 bytes of the clock registers
are defined as:

      8/ 9/ A/ B/ C/ D/ E/ F/
    ctl/ss/mm/hr/wd/dy/mo/yr/

Where:
  - Location 8 is the control register and
    should not be changed before exiting.
  - Bit 7 (80-FF hex) is the write bit - set
    to 1, it halts clock updates from the
    registers.
  - Bit 6 (40-7F hex) is the read bit - set
    to 1, it prevents clock updates to the
    registers.
  - On the Texas Instruments' NVsRAMs,
    bits 0 thru 4 contain the calibration
    settings. On the Dallas NVsRAMs these
    are not used.

11



NVsRAM Tests

To check the NVsRAM memory locations, run
NVsRAMck.

Notes:
  * Running the NVsRAMck utility will test all
RAM locations in the NVsRAM device by writing a
value of the user's choice to all locations in
the NVsRAM. It then goes back and looks for
differences.

  * If the clock is running, the clock register
locations are not changed. However, if the clock
is NOT running, all locations are overwritten,
including the clock.

WARNING: Writing any value greater than 40h,
will make the clock unreadable and it will have
to be turned ON and set by ICLKSET!

Monitor ROM NVsRAM Test

ZROM v4.3 is able to test each boot device by
using the {F8} function key. This comes in handy
if you suspect a problem with the NVsRAM on the
LLIDE controller card.

It will perform a checksum and will check it
against the one stored in the NVsRAM when it
was last programmed. If it is different, it
will report an EEPROM Error. If correct, the
test will repeat until you press the {DELETE}
key. To initiate this test, type:

    {F8}{F4}{S}{RETURN}

Upon pressing the {F8} key, the computer screen
will blank and then display the following:

    Default Booting Primary Z207 34pin Unit 0
    Input BOOT string<CR>_

                 TEST COUNT =

    TYPE <DELETE KEY> TO ABORT

As you press the {F4}{S} keys, they are inserted
at the cursor. When you press the {RETURN} key,
a third line is added to the screen: 
 
    Booting Secondary EEPROM Unit 0

and the COUNT begins to increment or an error
message is displayed.

Note: As this test is only performing a CRC
check, it will only report the "EEPROM is
Corrupt" message. See the Error Messages listed
below. Reboot in NVsRAM programming mode using
an alternate boot device and run CHKSUMEP.COM,
EPWRFILE.COM, or EPROMPGM.BAT to recover.

TESTIDEP.COM

This utility can be found on the Z-DOS v4.06
CD-ROM in the directory:

    X:Z-DOSv4.06 > LLIDE > NVsRAM > TestPgms

TESTIDEP can be run at any time from the DOS
prompt. Like the test above, it simply calcu-
lates a Checksum and compares it with the stored
value on the NVsRAM. If it was successful, it
reports:

    IDE EEPROM IS OK
 
If not, it reports: 
 
    IDE EEPROM IS CORRUPT
 
Run EPWRFILE.COM as discussed above to recover,
or reboot in NVsRAM programming mode and run
CHKSUMEP.COM or EPROMPGM.BAT.

LLIDE Controller Error Messages

Possible errors that may appear during the Boot
test or during the Boot process include:

Errors: Reasons:

EEPROM is Corrupt Checksums do not match. 
Device Error

NO IO.SYS IO.SYS missing or
corrupt.

Could not find DOS, MSDOS.SYS missing or
disk not a system disk Corrupt.

Bad or missing Command COMMAND.COM missing or
Interpreter corrupt.

ERROR: No LifeLine IDE Drive not detected!
Drives Detected! Check cables & power.

***Driver NOT Drive incompatible with
installed due LLIDE Controller Card.
to prior ERROR***       Try another drive.

Check Drive DS/CS
jumpers.

Drive not listed on Drive incompatible with
IO Boot Screen or LLIDE Controller Card.
Info Wrong. Try another drive.

Check Drive DS/CS
jumpers.

For any error messages involving the NVsRAM,
all errors except mechanical or internal
failure can generally be corrected by running
CHKSUMEP.COM, EPWRFILE.COM, or EPROMPGM.BAT.
See the section on programming the NVsRAM above
for the procedures.

12



Advantages of an IDE controller

Besides the obvious about adding a high capacity
hard drive to the Z-100 and the declining
reliability and availability of MFM hard drives,
some persons have older Z-100's that never had
the power cables to upgrade to a hard drive
system. This upgrade requires NO additional
power connectors.

A major advantage of the IDE upgrade, is the
greatly reduced power requirements. If you are
replacing an MFM hard drive setup with an IDE
drive setup, instead of powering a data
separator card and a massive Z-217 controller
card with their hefty power requirements, the
new IDE controller requires a small 5 volt
regulator that barely gets warm, and that's the
warmest part on the board, even at 10 MHz!

If the power supply fan noise had been driving
you nuts in the past, there may be a possibility
of finally being able to replace the fan with a
slower or slightly smaller unit, though it is
still not recommended!

Project Status:

The IDE Controller boards have now all been
sold. While everything we have been throwing at
the new boards, including the new Compact Flash
(CF) memory cards and Disk-on-Module (DOM)
memory units, have been working, we have found
that the DOM units require that U9 and U12 be
changed to 74HCT245 chips.

Several problems have already been recognized
and some still need to be addressed:

Software Not Recognizing IDE Partitions -
Without going too deep into details, we have
found that PeachText 5000, and probably other
early software, do not know how to deal with
partitions larger than 32 Mbs in size, probably
due to memory addressing limitations.

When we created some smaller partitions on our
IDE drives, they were recognized and used by
Peachtext 5000 just fine. So, the easiest work-
around is to ensure that there is at least one
32 Mb partition on the new IDE drives for use
by those applications that will not recognize
anything larger.

With all the new drive partitions being placed
on the IDE devices, and acerbated by the
requirement to have one or more smaller (<32Mb)
partitions, it has become very evident that a
Partition Listing utility is required to perform
the same function that ZDIR does to directories
and files.

It appears that the Editor in Peachtext 5000 has
scrolling problems with the latest Z-ROM chip.
As you know, the standard number of lines per
screen is 24 on the Z-100, with a status line on
line 25. This problem has been caused by the
Z-DOS v4 lines per screen default of 25 lines
with line 26 being the status line.

 The fix is to run the new command:

SETLPS 24

DIAG giving false errors - The Heath/Zenith
Disk-based Diagnostics Program, DIAG, is giving
false errors when running the system memory
tests from an IDE device, including the NVsRAM.
The symptoms vary, but may include freezing the
computer, giving 'Wild Interrupts' or 'Divide by
Zero' errors, scram-bling info on the screen,
false error reports, inconsistent operation, and
other unexplained symptoms.

After days of tracking this problem down, we
think that it appears whenever SHARE.EXE is
loaded. SHARE is required for using disk
partitions greater than 32Mb in size.

Until this is figured out, always run DIAG
from a floppy drive and do NOT load SHARE.

Compact Flash Cards Not Recognized - There
appears to be a problem with some PC clones
not recognizing Compact Flash (CF) cards when
placed on the same IDE connector as other
drives. This requires further testing on both
the PC and Z-100 machines.

CAUTION:  Do NOT use WINDOWS to prepare and
program your new IDE drives. While very tempting
to just copy files and directories at the touch
of a mouse, Windows places file volume names on
all media during file transfers. These are seen
on the Z-100 as additional volume labels and are
NOT erasable at the present time. This occurs on
all media - including floppies.

While they apparently cause no harm, they are
listed with all the other file names and litter
the start of the directory. Use a DOS startup
disk and the DOS XCOPY utility to do your file
transfers. The Z-DOS version of XCOPY works just
great.

WARNING:  Do NOT place a Z-100 bootable floppy
disk in a PC for file transfers. The PC Windows
system now writes a unique 8 byte disk ID to the
boot loader on sector 0 of floppy disks, trash-
ing any previous information!

For more information read the article "DANGER! -
Understanding Disk Volume Tracking in Windows"
in issue #84 of the "Z-100 LifeLine".

John Beyers is no longer available. So work on
software issues has slowed to a crawl. I am
looking for others with experience in assembly
language to assist me in deciphering much of
John's work so that we may continue to develop
the remaining software to make maximum use of
our new capabilities.

We are presently relying on the PC's Free FDISK
to prepare the IDE drives on a PC. It is unknown
when we will get to work on the FDISK and
PCFORMAT programs to prepare the IDE drives
while installed on the Z-100 computer. The next
section discusses the FDISK problems in detail.

13



FDISK Problem:

MS-DOS FDISK issues:

While troubleshooting the Peachtext 5000 problem
mentioned above, I tried a 64 Mb Compact Flash
'CF' Card on a PC. I made two 32 Mb partitions
on it to try with PT5000 and ran SCANDISK on
each partition - yet, every time I booted with
it in the Z-100, the second partition was always
listed as NO NAME.

Nevertheless, COPY and FC (File Compare) opera-
tions were all successful, or so I thought.
I also tried two Caviar 1210 drives with
similarly sized partitions with the same
results. The COPY and FC operations were also
fine.

It seems that while all partitions and partition
sizes are being recognized, their assigned
labels are not. The bootup screen shows the
first partition name correctly, but the rest are
all reported as "NO NAME".

Large partitions (those >32 Mb) work great, even
if listed as "NO NAME". ZDIR recognizes the
directory and new files are added correctly to
the FAT.

Small partitions (those <32 Mb) are not working
at all. ZDIR shows the directory as garbage or
no files listed at all. New files are copied to
the FAT correctly and File Compares are fine.

However, once the drive is returned to a PC,
the newly added files are NOT listed in the FAT.
SCANDISK reports a difference in the two FATs
and, feeling that FAT1 is correct, wants to
replace FAT2 with FAT1. This results in the new
files added by the Z-100 as being lost and is
reported by SCANDISK as lost data! Further, a
512 Kb file (my EPTEST.x file) is reported as
2 Mb of lost data!
 

Free FDISK and Bug:

Note:  This version of FDISK.EXE is from FreeDos
version 1.2.1 and is meant to run on a PC-clone.
John Beyers has reported that it has been run
successfully on the Z100 with MFM hard drives,
but to run on the Z-100, it needs ZPC installed
and you must be in PC Mode. The .INI files must
be placed in the same directory as FDISK.EXE.
Free FDISK is available from:

http://www.23cc.com/free-fdisk/

Charles Hett, who liked using Free FDISK instead
of the Windows FDISK that I was using, was
having different symptoms. His disks were all
working properly, but showed size discrepancies
on the boot screen.

Later, when Charles tried using a Windows 98
version of FDISK, he had problems partitioning a
Samsung 1.5 Gb drive into two 32 Mb partitions
and one 1.44 Gb partition. FDisk seemed to work
fine preparing the drive, and the partitions
checked OK with CHKDISK and Norton Disk Doctor.

But when the drive was placed on the Z-100, the
partitions were recognized but were reported as
using an unrecognized format that could not be
read from or written to.

He then repeated the entire process using Free
FDisk and everything worked fine.

Well, when I tried using Free FDISK, I found
that Charles was correct - that drives parti-
tioned with Free FDISK work correctly, with one
exception that I have found so far.

Version 1.2.1 that Charles sent me seems to have
a bug in judging the size of the last partition.
If I create the last partition by using either
the default - when the program asks if I wish to
use all remaining space and making it the active
partition - or if I answer NO and set the amount
of memory myself using the amount the program
says is left, it seems to be 1 Mb too large and
causes a problem.

For example, using the amount of memory for each
partition that I had been using with WIN98's
FDISK, there should be 28 Mb remaining on the
Caviar 1210 drive that I had been using. The
Free FDISK program reported that there was 29 Mb
left, but if I use the default and answer YES to
the question, the memory changes to 28 Mb when
it is accepted anyway. And, if I place the 29 Mb
in myself, the program will still replace the 29
with 28 Mb.

But, it does not stop there. With the 28 Mb size
for this last partition - whether automatic or
if I place the 28 Mb there myself, SCANDISK has
a problem with this last partition. Every time I
create the last partition and then FORMAT (OK),
and copy files to it (OK), when I run SCANDISK
on that last partition, it reports:

"SCANDISK cannot read from the last cluster on
Drive x. This cluster is either damaged, or your
system is not configured properly. Drive x may
need to have Logical Block Addressing (LBA)
enabled to work properly, or its disk partition
may be incorrectly marked as a non-LBA parti-
tion. Data loss can occur if your LBA setting or
disk partition type for this drive is miscon-
figured."

In actuality, when SCANDISK does the surface
scan, it starts calling ALL of the last 100 or
so clusters as bad. As each cluster is examined,
it takes about 3 minutes, so after an hour of
examining each of these and declaring it bad,
I quit only about half way through. Instead, I
had to go back into FDISK and make that last
partition 1 Mb smaller and then everything was
fine.

Note:  On the 512 Mb CF card, for some reason, I
had to drop 3 Mbs because the Free FDISK program
would not accept anything less.

On the off chance that Win98 FDISK was having
difficulty with the size of this last partition
and causing my problems, I repartitioned the
drive again with Win98 FDISK and reduced the
last partition by 1 Mb, but there was no change
in the symptoms listed above.

14



By the way, I also ran the Win95 version of
FDISK on the Caviar 1210 drive before going to
Free FDISK. It gave ALL the same symptoms as
those partitions created with Win98 FDISK,
EXCEPT that when using ZDIR, there were no
garbage lines in the directory. It would just
say that there were NO FILES!

So when I copied EPTEST.DAT, that file would be
the first one listed! Of course, when the drive
was placed back in the PC, all the other files
would be listed again, less the new one!

End result:  With the last partition sizes
corrected, I have had NO problems using Free
FDISK, as Charles has suggested. I have
continued testing with IDE drives and many
Compact Flash (CF) cards over the years and the
results are consistent. If we cannot locate the
reason for the Win9x FDISK problems (cluster
size or other difficulty) we will have to use
the Free FDISK version to ensure compatibility.
Hopefully, by now both programs have been
updated, but I continue to use the utilities
that work (with the limitations as discussed).

The LifeLine staff feels confident that the IDE
Controller Card is now functioning as it should.
None of this sounded like a hardware issue with
the new boards, but rather, because of the
differences of Free FDisk and Win9x FDisk, which
should be treating the Format sessions the same,
we felt it must be a software issue.

Closing:

This was an exciting, one-time project, especi-
ally since our MFM hard drives have become
increasingly difficult to find, and repair is
virtually impossible.

I hope you find this article helpful, and
encourage you to read the other IDE articles on
this Website.

If you have any questions or comments, please
email me at:

z100lifeline@swvagts.com

Cheers,

Steven W. Vagts

15

mailto:z100lifeline@swvagts.com

