
2025

 March 2025

#WEB


 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

What is a
Breakout Switch?

by Steven Vagts
Editor, “Z-100 LifeLine”

What is a

Breakout Switch?

From the SCSI Host Adaptor
& Bootable EEPROM Board

Copyright (C)1992

When Zenith and Microsoft support moved on from
supporting the Z-100 series computer to devel-
oping PC hardware and software in the late
1980s, it quickly became apparent that any
additional work on the Z-100 would have to be
done within the Z-100 community. This was the
driving factor for Paul Herman to begin pub-
lishing the "Z-100 LifeLine" in 1989. The
purpose of the "LifeLine" was (and still is) to
provide a central point for dissemination of
information and development between venders,
research teams and the ultimate users.

One of the first projects was the development of
a new “Z-100 LifeLine” SCSI Host Adapter, also
referred to as the LLSCSI Controller Board, to
replace the aging "Winchester" MFM hard drives.

Originally conceived at the 1990 Z-100 Get-
Together in Norfolk, Virginia, the SCSI/EEPROM
board was a product of 1-1/2 years of research
and development. Under the auspices of “Z-100
LifeLine”, a development team was selected in
November of 1990, and production units were
first delivered in March of 1992.

A full team of volunteers began work on this
project in 1990:

  Paul F. Herman       Project Coordinator,
                       EEPROM programming,
                       Marketing

  Robert F. Hassard    Engineering design,
                       Prototype development

  Robert W. Donohue    MTR-100 ROM and BIOS
                       programming

  William E. Flanagin  SCSI programming

  Travis J. Barfield   Parts acquisition &
                       Manufacturing

  Michael Zinkow       Z-DOS development

  John Beyers          BIOS programming &
                       Z-DOS utilities 

The “Z-100 LifeLine” SCSI Host Adaptor/Bootable
EEPROM Board, hereafter referred to as the
LLSCSI/EEPROM Board, was a multifunction S-100
board designed for the Heath/Zenith Z-100 Series
computer. It provided the following features:

  -  An industry standard SCSI Host Adaptor.
This allowed you to connect fixed or removable
media hard drives, tape backup units, CD-ROM
drives, floptical drives, or any other device
which included an imbedded SCSI controller, to
your Z-100 computer.

  -  A Bootable EEPROM Device. This non-volatile
memory device, based on the AM28F020 flash
programmable EEPROM, could be programmed at
any time without removing it from this board.
Programming software was provided with the
board. The EEPROM device was fully bootable

1



and could contain up to 256Kb of user selectable
programs or files.

  -  A Hardware Breakout Switch. The breakout
switch circuitry worked by generating a non-
maskable interrupt (NMI) on the S-100 bus.
Firmware to support the breakout switch for
debugging was provided in the MTR-100 Monitor
ROM (aka ZROM), beginning with version 3.1.

This was the first time that a Breakout Switch
appeared on a LifeLine Project, but it was not
the last... Several years later it also appeared
on the “Z-100 LifeLine” IDE Controller Board.

Note: For more information on the LLSCSI Board
and the LLIDE Controller Board, please refer to
their respective articles on the “Z-100
LifeLine” Website.

But what was this fascination with a Breakout
Switch, and more importantly, what does it do?

Hardware Installation:

The Breakout Switch connector is along the right
side of the LLSCSI Controller Board.

Mount the Breakout Switch in a convenient
location so that it can be accessed with the
case closed. Back-panel mounting should be fine
for occasional use. Programmers who expect to
make use of the breakout switch may want to
connect it to a long cable, where it can be
brought to the front of the machine when in use.
Connect the breakout switch cable to connector
J2 on the SCSI/EEPROM Board.

IMPORTANT NOTE: If you will NOT be using the
breakout switch feature, you MUST place a
shorting jumper over the LEFT two pins of
connector J2 at the right side of the LLSCSI
board.

On the LLIDE Controller Board, the Breakout
Switch is a push button mounted at the extreme
upper right corner beside the mounting lever. If
you wish to install a remote switch, you could
solder a pair of wires across the push button
terminals on the solder side of the controller
board.

Testing the Hardware:

Use the following procedures to test your
installation:

1. After mounting the LLSCSI Controller or the
LLIDE Controller in any available S-100 bus
slot, turn the power on. You should hear the
usual two beeps and get a hand prompt. If not,
check the ROM installation, the settings of
J-101 and J-102, and your cable connections.

2. Boot the system with MS-DOS v3.1 or later.
You can boot from a floppy or a Z-217 controlled
hard drive. The DIP switch has been set so the
default boot device is the 5" Floppy Drive, so
you can just press {B} for Boot, and press
{RETURN}. Or you can manually select the boot
device by using one of the following command
sequences (If the device is installed):

   {B}oot {F1} boots from the 5-1/4 inch floppy
   {B}oot {F2} boots from the 8 inch drive
   {B}oot {F3} boots from the Z-217 hard drive
   {B}oot {F4} boots from the SCSI EEPROM, or
   {B}oot {F4}{p} boots from the SCSI EEPROM
   {B}oot {F4}{s} boots from the IDE NVsRAM

Where:
   {P} or {p} is the Primary EEPROM device
   {S} or {s} is the Secondary NVsRAM device

3. You should now be at the DOS prompt.

4. If you installed the LLSCSI Breakout Switch,
try activating the switch. On the LLIDE
Controller, just push the button. In either
case, you should get a display of the CPU
register contents, along with an unassembled
assembly language instruction, followed by the

2



Figure 1.

MTR-100 hand prompt. If not, you may have
installed the switch incorrectly.

5. Type the {G} monitor command. The word ‘Go’
should be displayed on the screen. Now hit the
{RETURN} key, and you should be back to the DOS
prompt.

Great! But what is it used for? Is there any
software for it?

The NMI Breakout Switch

The breakout switch portion of the LLSCSI Con-
troller or the LLIDE Controller is a tool for
programmers. It allows you to break out of any
executing program, perform various debugging
chores, and then continue execution. The switch
works by generating a non-maskable interrupt
(NMI) on the S-100 bus. The LLSCSI Breakout
Switch schematic is in Figure 1.

In order to use the breakout switch for its
intended purpose, you need special software to
support it (a non-maskable interrupt routine, to
be specific). The MTR-100 Monitor ROM v3.1 and
later includes debugging capability which
utilizes the NMI breakout switch. Additional
instructions accompanied the MTR-100 with
details about how the switch was used with
the ROM.

Use of the breakout switch was not recommended
unless you were a programmer who understood
assembly language programming. If you do not
fall into this category, you may not want to
install the breakout switch.

IMPORTANT: If you do not install the breakout
switch on the LLSCSI board, a shorting jumper
must be placed over the two pins of J2 nearest
the center of the board. Otherwise, your Z-100
may fail to operate correctly.

Theory of Operation

As we mentioned, the LifeLine SCSI/EEPROM Board
serves three functions; a SCSI host adaptor, a
bootable in-circuit programmable EEPROM, and a
Breakout Switch. The IDE Controller is similar,
but for IDE devices. In each case, the operation
of the Breakout Switch is similar.

Perhaps the best way to describe the function of
the Breakout Switch is to do an example of its
use. While many programmers may find other uses
for the switch, I have only used it in a few
specific instances - usually troubleshooting a
stalled Z-100.

While checking out the installation of the
LLSCSI Host Adaptor Controller, I found that the
LLSCSI EEPROM would boot just fine with the
Monitor-ROM v3.2 and v4.24, but would stall
right after the booting message with ZROM v4.3!

Instantly, I figured there was an undiscovered
bug in the newer ZROM, but I needed to check it
out - a perfect use for the Breakout capability.

I quickly put together a suitable cable with a
momentary-closing push button switch and
installed it on the board’s connector.

I attempted to boot from the EEPROM using the
command;
   {B}oot {F4} {CR}

and the display showed:

   “Input Boot String <CR> F4”
   “Booting Primary EEPROM Unit 0”
   “(C)1992 Z-100 LifeLine v1.13, Booting
   EEPROM Device ...”
   “No System”

And then immediately stalled... 

3



Pressing the Breakout Switch

Pressing the Breakout Switch at this point
interrupts the presently running DOS program,
displays the status of the registers and flags,
and brings us back to the Hand Prompt:

    AX   BX   CX   DX   SP   BP
   07FF 002E 0000 F808 0200 0000

    SI   DI   DS   SS   ES
   0517 BC50 1400 1FA0 E000

       ODITSZ A P C
   1111000001000110

   (All on one line)

   1400:04F1 EBFE JMP 04F1

At this point (using ZROM v4.x) you can press
the {HELP} key to see the commands available
from the Monitor ROM (ZROM).

There are several commands that you can use,
which are similar to those available in the
DEBUG utility.

   ZROM Function
   Syntax:
   {C}ompare RANGE ADDR
   {D}ump [RANGE]CR
   {E}nter [ADDR]CR
   {F}ill RANGE BYTE
   {G}o [=ADDR][,BRKADDR,..]CR
   {H}ex WORD1[WORD2]
   {I}nput PORT[w]
   {M}ove RANGE ADDR
   {O}utput PORT,VALUE[w]
   {P}roceed [=ADDR][,COUNT]CR
   {R}egister CR or REG
   {S}earch RANGE BYTE[,”str”]
   {T}race [=ADDR][,COUNT]CR
   {U}nassemble [RANGE]CR

Where RANGE is ADDR-OFFSET, ADDR is [SEG:]OFFSET
and SEG is CS, DS, ES, SS, xxxx.

As with all the boot screen commands, you only
press the first letter of the command and type
the arguments as presented above. {CR} is the
{RETURN} key.

As this is not an article on DEBUG, we are only
using a few of these commands today. For a more
thorough discussion of all the DEBUG commands,
please refer to the Microsoft MS-DOS Manuals.

So, back to our stalling situation, even without
doing anything else, we can see that we are
stuck in an endless Jump-to-itself loop. So this
was intentional.

If we press {T} for trace, we get the same line
displayed for each press of {T}. Let’s see what
is going on... 

The line;
   1400:04F1 EBFE JMP 04F1

shows us that we are in SEGment 1400:. This will
usually vary considerably with different compu-
ters and will most certainly not be the same as
what you may see on your computer. It is the
area in memory that the computer decided to use.
Different computer programs will end up in
different areas (Segments) of memory.

However, in this case, the 1400 SEGment was
purposely set and used within the program to
create the Boot code for the EEPROM.

The 04F1 is the OFFSET in this particular
program, which generally begins at offset 0100
in hex. This will generally NOT change, and is
like a line number in a BASIC program, except
unlike a line number, this OFFSET is tracking
the number of bytes used to this point in the
program. Every byte of code and data is being
counted.

The EBFE are the two bytes representing the JMP
command, where EB#h is JMP (next address +#). If
the # is less than 80, then the jump address is
the next address +#. But if the # is greater
than 7F, then the jump address is the next
address - (FF-#). In this case, next address
minus 2; it is jumping back to itself!

The JMP 04F1 is telling us in plain language
that it is jumping to itself!

Now, let us check out why?

In cases like this, before I Unassemble a sec-
tion of code, I like to Dump the area around
this section because the Dump command will show
us any areas that are actually not code, but
ASCII text, and this particular program has much
of it.

So press {D}ump and enter the desired OFFSET,
0400. You can enter the entire address by
including the SEGment, 1400:, but the current
segment is assumed. This displays the screen:
(Sorry, but my pictures show SEGment 0000:)

4



And, pressing just {D}ump again gives us the
next screen:

The areas that did not hold text is where we
need to use the {U}nassemble command to actually
list and make sense of the code.

Since we are stuck at the 1400:04F1 line, we
will try looking at the code before that line.
I included this last picture to give you an idea
what the Unassemble screen actually looks like.
The code is listed in columns of addresses, code
bytes, and program ststements, but there wasn’t
much of interest found. 

Since we began dumping at 1400:0400, let us use
the command:

   {U}nassemble 1400:0400

   1400:0400 xxxx JMP 0421

However, as the code between the bytes 0402 and
0421 did not make sense, they are probably just
data in the form of data bytes and data words.
So, we just press {U}nassemble again, and
concentrate on the instructions beginning at:

    1400:0421 xxxx JMP 0448

We really do not need to worry about the code
bytes represented by xxxx, nor most of the
address numbers, so for readability, we will
ignore these in the following code statements,
as we continue to press {U}nassemble:

   1400:0448 NOP
        0449 PUSH CS

POP DS
MOV AX,1400 ; SEGment 1400
MOV ES,AX
MOV CX,3C00 ; Block size
MOV SI,0400 ; Starting Offset
MOV DI,SI
CLD
REPZ
MOVSB
JMP 1400:0460

   1400:0460 MOV DI,0404
MOV SI,040B
MOV AL,[SI+0A]
MOV CL,0A
REPZ
MOVSB
MOV SI,0436
MOV CL,12
REPZ
MOVSB
PUSH CS
POP DS
MOV [0600],AL
MOV AL,08
OUT FC,AL
MOV SI,05AB

   Note:  05AB Points to the start of the
    opening string!

MOV BP,0039
   And 39h = 57d, which gives the length of

    the opening string.

   1400:0483 CALL 04F3 - Print string routine
PUSH CS
POP ES
REPZ

   1400:049D CMPSB
JNZ 04E8

5



   Note: 04E8 Jumps to the routine that prints
    the “No System” message!

MOV AX,[BX+041C]
ADD AX,[0404]
DEC AX
MOV CL,[040E]

   1400:04AD SHR AX,CL
XCHG BP,AX
MOV AX,[BX+041A]
DEC AX
DEC AX
MOV CL,[0412]
SHL AX,CL
ADD AX,[0410]
XCHG BX,AX
MOV AX,0040
MOV ES,AX
XOR DI,DI
MOV DX,00CE

   1400:04CB MOV AX,BX
OUT DX,AX

   1400:04CE CALL 04FE
MOV CX,0400

   1400:04D4 IN AX,DX
STOSB
LOOP 04D4
INC BX
DEC BP
JNZ 04CB
MOV AX,CS
ADD AX,0040

   1400:04E1 MOV DS,AX
JMP 0040:0000 Start of EEPROM?

   1400:04E8 MOV SI,050C
   Note: 050C is the start of the “No System”

   Message!
MOV BP,000B
CALL 04F3 Print Msg

   1400:04F1 JMP 04F1 JMPs to self!

   1400:04F3 LOBSB
PUSH SI
CALL FE01:0019

So, it is just like we were in DEBUG, developing
a program. It works the same way, and you can
make out a lot about what is happening.

The key to our problem seems to be the CMPSB
statement at 1400:049D! Fortunately, we have
most of the source code for these LLSCSI files,
if we can identify the routine affected...

Initially, I thought this code was from the
LLSCSI.SYS device driver, but when I used the
command;
   DEBUG LLSCSI.SYS

and tried dumping the file, the code did not
match at all.

I suspected IO.SYS next, but the command;
   DEBUG IO.SYS

again showed that was not the file, either.

After some head scratching and searching with
DEBUG to list the contents of other routines,
I finally found that it actually matched the
last portion of the EEMDISK.SYS file!

While I had thought this file was limited to
programming the EEPROM, it is also used to boot
the EEPROM programming!

Now we had the fully documented file to explain
the original intent of the code, the reason for
the test, what was tested - all from the
Breakout Switch!

As it turns out, while searching for the source
code for EEMDISK, I also found a later version,
but it did not work any better.

After much more experimenting and testing, I
have come to the conclusion that it is indeed a
problem in ZROM v4.3 and will require further
troubleshooting.

For now, we will just need to accept the fact
that the LLSCSI board will NOT work with the
newer ZROM v4.3.

I hope this explains at least one of the useful
functions of the Breakout Switch. It is
certainly another tool to help programmers in
troubleshooting their routines.
I hope you find it useful.

If you have any questions or comments, please
email me at:

z100lifeline@swvagts.com

Cheers,

Steven W. Vagts

6

mailto:z100lifeline@swvagts.com

