
2022

 March 2022

#WEB
 This article was first published in issue #99, June 2005

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Z-DOS v4 ZFMT207.COM
Documentation

by Steven Vagts
Editor, “Z-100 LifeLine”

ZFMT207.COM

John Beyers has been writing a bevy of programs
and utilities for the new Z-DOS v4 to take
advantage of every conceivable capability that
the Z-100 has to offer. As a result, this DOS
has numerous changes that make life considerably
easier for Z-100 users and the added flexibility
for applications is mind boggling.

The Z-207 Floppy Controller Board has the cap-
ability of doing "FM" and "MFM" data encoding,
has 50-pin and 34-pin connectors, and has 250
KHz and 500 KHz data rates available. It was
logical to make a program that could take full
advantage of all this capability.

One such program, DSKCOPY4, is a program to save
a bootable floppy disk's image as a single file
that could then be taken through a reverse
process to reconstruct a bootable system disk
whenever needed in the future. This will be
discussed in another article.

But the DSKCOPY4 program also pointed to a need
for a FORMAT program with more flexibility. So,
John wrote ZFMT207 to create weird disk formats
for experimentation.

The program is not a replacement for FORMAT,
which does a superb job formatting standard
floppies and hard drives. Rather, it is used for
formatting and thoroughly checking diskettes
only.

Using ZFMT207, you will also have to run SYS and
LABEL separately to complete the disk. However,
you can use the program to come up with some
pretty bizarre formats, including some with
higher disk capacities than the standard ones
we use now.

Background

Let's briefly clarify a few terms that will be
mentioned in our discussion and at the same
time, briefly review the development of the
floppy drive. Finally, we also add a warning to
those using floppies on both their PC's and
Z-100's.

"FM" and "MFM" encoding and "Single Density"
versus "Double Density": When discussing floppy
drives, there are two basic means of encoding
information for storage on a diskette. The term
"double density" arose from the use of the term
"single density" to indicate a type of drive
that used Frequency Modulation (FM) encoding to
store approximately 90 kilobytes on a single
sided floppy. This type of obsolete drive was
never used in any IBM-compatible systems, but
was used in some older systems.

When drive manufacturers changed the drives to
use Modified Frequency Modulation (MFM)
encoding, they roughly doubled the recording
capacity and began coining the term "double
density" to indicate the relative gain and
advantage of this new encoding. All modern
floppy disk drives use MFM encoding. Even our
old Z-DOS one-sided, 5.25", 8 Sectors/Track,
160K diskette, used MFM encoding.

"High Density": Another major change in floppy
capacity was made when the number of tracks per
inch was doubled, changing from 48 tracks per
inch (used for single- and double- density
drives) to 96 tracks per inch, and at the same
time, increasing the rotation speed from 300 RPM
to 360 RPM. These 5.25" drives were called "high
density" drives.

"Dual Density": Technology quickly combined the
capabilites into "dual density" drives that were
capable of both double and high density formats.

1



The new 3.5" drives arrived next with their
track density increased to 135 tracks per inch.
The "double density" 720K diskettes spun at 300
RPM and only required a 250 KHz data rate from
the controllers, using the common standard for
5.25" drives.

The "high density" 1.44M drives that came next,
still spun at 300 RPM but used a 500 KHz data
rate to improve capacity. For both 5-1/4" and
3-1/2" sizes, drives that were capable of both
"double density" and "high density" are con-
sidered "dual density" drives.

"Extended Double Density": If all this wasn't
confusing enough, one other factor changed to
increase floppy capacity. DOS v1.1 and earlier
used 8 sectors per track, which created double
density 5.25" disks with a standard 320K
capacity.

DOS v2 and later used 9 sectors per track, in-
creasing the capacity to the 360K that everyone
is familiar with. Many books treated this as an
"extended format". Others ignored it entirely.

"Quad Density": Finally, while not useable on
the Z-100, we mention 2.88M drives, if only to
make this discussion on floppy drives more
complete. As with the other 3.5" drives, these
spun at 300 RPM, but required new controllers
that supported a 1 MHz data transfer rate,
beyond the capability of the Z-100's Floppy
Controller. These were considered "quad density"
drives.

"PC-type boot loader": This loader differs from
the standard Zenith one. The boot loader
actually contains two parts:

    * A table called the BIOS Parameter Block
(BPB), that tells DOS how to access the disk. It
contains all the disk parameters. This has been
modified in Z-DOS v4 to be compatible with what
a PC machine expects to see.

    * The boot code for the particular computer
that this software is running on. This is
obviously machine dependent and is what makes
the software bootable on a particular computer.
This can not be changed.

The "PC-type boot loader" enables the disk to be
used on a PC without the PC damaging the exist-
ing Z-100 boot loader on the disk. But, see the
following warning.

One more note. There were two modifications made
to the Z-207 Floppy Controller Card to permit
using 3.5" drives on the Z-100, and now might be
a good time to mention them:

    * The Hughes modification permitted attach-
ing dual-density 3.5" drives on the 34-pin
connector by using the circuitry intended for
the 50-pin connector. As it required no changes
to the MTR-ROM, it should work with any MTR-ROM,
at least v2.5 or later.

However, it disabled the use of the 50-pin
connector for 8" drives and used the drive
letters C and D for the high density counter-
parts of drives A and B.

The modification was described in great detail
in "Z-100 LifeLine" issue #13. Z-DOS v4 still
recognizes this modification as a selection on
the DRIVECFG screen.

    * The Barfield modification permitted the
use of the dual-density 3.5" drives on the same
cable as their 5.25" cousins by using a 5" fast
step signal, and it retained the use of the
50-pin connector for the 8" drives.

For this reason it is the preferred option, but
it requires Z-DOS v4 and a selection on the
DRIVECFG screen.

Whether the Hughes or Barfield modification was
made to the Z-207 card isn't important to any
software except IO.SYS. And this is taken care
of by the selection made in DRIVECFG.

The only precaution is to make sure to select
the correct DOS drive letter for the disk type
when you are using the Hughes modification.

DANGER -- "Disk Volume Tracking in Windows"

Related to the information on the boot
loader, I must restate a warning here that
was discussed in depth in "Z-100 LifeLine",
issue #84.

The article, entitled "DANGER! - Under-
standing Disk Volume Tracking in Windows",
provided information regarding a unique 8
byte disk ID that Windows now writes to the
boot loader on sector 0 of floppy disks,
trashing any previous information.

On our Version 4 Z-100 disks, this is only a
slight annoyance, as this area now only
contains a noncrucial date and time of the
last change to the disk.

Unfortunately, on Zenith formatted version 1,
2 and 3 disks, the information that is
trashed is crucial to the boot process.

Once trashed, the disk is rendered unusable
and must be reformatted!!

The article concluded with a patch to your
Windows PC to alleviate the problem.

2



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Z-100 Format Z207 Device Version 4.06

 This program is NOT intended as a replacement to the DOS FORMAT command, you
 will have to run SYS and LABEL to complete the disk. It does allow you the
 option of creating most types of disks bootable by our MTR ROM that DOS and
 our Z-207 controller card are capable of using. IO redirection (PRN or NUL)
 can be used for Help Screen and Bad Sector Display.

 Usage: [a:\][pathname\]ZFMT207 [?] [/x][d:][/x]

 Where anything in [brackets] is optional and:

 a:\path - Before command is the drive\pathname with transient command file.
 d: - Is the drive identifying the disk to be formatted.
 /x - Is any combination of the following switches:
 /A[n] - n=0 Forces Low Density MEDIA on DUAL DENSITY drives, n>0 is High.
 /B[n] - Specify BASE physical sector # (Default=0,HP PCDOSv1 compatible).
 /C - Clear the directory entries and FAT, update to "PC" style loader.
 /D[n] - n=# of Sectors to use for Root Directory entries (Default=1).
 /F[n] - n=# of FAT's to create (Default is 1 instead of 2).
 /G - If the previous FAT is readable, retain the old bad sectors.
 /H[n] - n=# of Format Retries if Format Verify is active (default=3).
 /I - Use INTERLEAVE for sector ordering.
 /K[n] - n=log2 Cluster Factor, defaults to 0. (n>7 uses 1 sector/FAT)
 /L[n] - Use FM mode. (n<>0 use 0FFh as filler instead of the default 0)
 /M - Create single-sided disk with double-sided media.
 /N - Suppress the onscreen prompts.
 /O[n] - Override SPT default or if n=0 use MAX possible.
 /P - Updates old disks with new "PC" style Boot Record, data is saved.
 /Q - Fill each sector with location info Trk/Side/Sec/SecSize.
 /R[n] - n=# of Reserved Sectors, default is 1 instead of # = 512 bytes.
 /S[n] - Special CP/M media, FM trk/side 0 (n=/X def), MFM rest of disk.
 /T[n] - n=# of Tracks, default is 40 tracks on an 80 track device.
 /U - Do NOT Double Step when # of tracks is less than 1/2 of total.
 /V[n] - n=#; 0=no verify; 1=VafterFMT; 2=VwithFMT; 4=Add'l Write Verify.
 /X[n] - Extended format,0=128,1=256,2=512,3=1024 bytes/sector (default=3)
 /Y[n] - n=0-16, use 0FnH for FAT ID instead of 0F8H.
 /Z[n] - Track Zero SPT if Special CP/M media (default=26)(n=0 is Max)

Figure 1.
ZFMT207 HELP SCREEN

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Invoking the ZFMT207 program's Help Screen.

To invoke the ZFMT207 Help Screen, type:

    ZFMT207 ?{CR}

or

    ZFMT207 /?{CR}

where {CR} will represent the {RETURN} key (the
{CR} is omitted for the remainder of this
article).

The ZFMT207 Help Message of Figure 1 is
displayed.

The Help Screen and Bad Sector Display can be
printed out by using IO redirection (PRN or
NUL); for example:

    ZFMT207 /? >PRN

The ZFMT207 program is invoked as follows:

    Usage: [a:\][pathname\]ZFMT207 [?]
           [/x][d:][/x]

Where anything in [brackets] is optional and:

    a:\path  - Before command is the
               drive\pathname where the
               transient command file is
               located.

    d:       - Is the drive identifying
               the disk to be formatted.

    /x       - Is any combination of the
               following switches:

3



      /A[n]  - If n=0, it forces the formatting
of Low Density MEDIA on DUAL DENSITY drives. If
n>0, it forces High Density.

This switch is only necessary when the program
can not detect the media type from the pre-
existing format. Low Density (n=0) is the
default if no parameter is given.

It can also be used to override the media
detection process in the case where the pre-
existing format is incorrect on the disk.

      /B[n]  - Specify BASE physical sector
number (Default=0, HP PCDOS v1 compatible).
Normally the base physical sector number on
each track is 1. While this has been the
industry standard for many years, early in the
development of personal computers, some disks
(such as those used by Hewlett-Packard) had a
base of 0.

Actually, it is possible to start with any
number. Some copy protection schemes start with
sector 100. Our new BIOS can deal with any
starting sector number, but all "PC's" and our
original BIOS's must start with sector 1. So,
unless you want to use it as a form of copy
protection or need to use the disk on an early
computer, do not use this switch.

Without the switch given, the default is 1, but
if the switch is used, it is assumed that some
other value is intended. If a value for n is not
provided, the default therefore becomes 0.
Use this switch carefully.

      /C     - Clear the directory entries and
FAT and update to "PC" style loader. This is
similar to the original FORMAT in that you can
not change the physical characteristics of the
disk - number of tracks, sector size, sectors
per track, or base sector number - because a low
level format is not performed.

But you can change the logical configuration,
number of reserved sectors, number of FAT's,
number of Root Directory entries, cluster factor
and the FAT ID. You can also use the /G switch
to retain the previously detected bad sectors.

All data is lost, but not actually overwritten
unless the size of the FAT's and Root Directory
encroach on the previously written data.

      /D[n]  - Where n sets the Number of
Sectors to use for Root Directory entries. The
default is 1. Each Root Directory entry uses 32
bytes, so depending on the sector size, a
variable amount of entries will fit in each
allocated sector.

If you request a standard disk format, the
previously defined number of Root Directory
entries is used. All "PC's" and our original
versions of BIOS must use these defaults. Our
new BIOS can deal with any size for the Root
Directory.

      /F[n]  - Where n gives the Number of FAT's
to create. The default is now 1 instead of 2.

All standard DOS formats use 2 FAT's. MS-DOS
will write to all copies of the first FAT, but
may not read from any but the first FAT. You
must use some other program, like Norton, to
recover a file from a FAT other than the first.
Only our new BIOS can pass to DOS other than 2
FAT's.

With the improved disk reliability, the default
has now been set to create only 1, allowing the
extra memory to be used for data.

      /G     - If the previous FAT is readable,
retain the old bad clusters. Since some bad
sectors only show up once in a while, this is a
way to keep all sectors ever detected as bad,
marked bad in a newly created FAT.

Remember that if the cluster mapping changes,
ALL sectors in the previously bad clusters will
be mapped to their new cluster, and some good
clusters may end up being marked as bad.

This could happen when the previous cluster
factor is greater than 1. Since we do not know
which sector caused the cluster to be marked as
bad, it is assumed all the sectors in the
cluster are bad. If all these sectors do not end
up in the same cluster under the new format,
then some good clusters might also be marked as
bad.

      /H[n]  - Where n sets the Number of Format
Retries if Format Verify is active. The default
is 3, if /H is specified without [n]. If /H is
not specified, no retries are attempted.
Otherwise, retries are performed only in the
case when Verify with Format is also specified.
If it finds a sector verify error, a complete
re-format of the track is performed and then a
complete re-verify is done.

      /I     - Use INTERLEAVE for sector
ordering. If the "inter-sector" gap is too
small, reading consecutive sectors requires a
complete rotation of the disk to get back to the
next logical sector.

Interleave permits faster disk access by chang-
ing the order of track sectors. In a standard
disk with 9 sectors per track, without inter-
leave, the disk may have to make a complete
revolution in order to reach the next sector to
be accessed.

With interleave set, the order of the sectors is
changed so that the next sector that requires
access is the next to be located under the head
and is nearly instantly accessible. So, if
verify is taking way too long, Interleave may
help to avoid the extra rotation for every
sector read.

      /K[n]  - Where n=log2 Cluster Factor. The
default is 0 and when n>7, 1 sector/FAT is used.

Cluster factor is the number of sectors per
cluster. Each cluster has one entry in the FAT.

 If the total clusters is greater than 4086,
then 16-bit FAT's are used, otherwise a 12-bit
FAT entry is used by DOS.

4



Obviously, if you increase the number of sectors
in each cluster, you will reduce the total
sectors required for each FAT, thus increasing
the available space on the disk for data.

      The log2 values are as follows:
      0 = 1 sector/cluster
      1 = 2 sectors/cluster
      2 = 4 sectors/cluster
      3 = 8 sectors/cluster
      4 = 16 sectors/cluster
      5 = 32 sectors/cluster
      6 = 64 sectors/cluster
      7 = 128 sectors/cluster, the largest
          cluster factor DOS will use.

Any value for n that is greater than 7 will
request a calculation of the minimum cluster
factor that will cause only 1 sector for each
FAT, maximizing the available data area.

      /L[n]  - Use FM mode, where n<>0 uses 0FFh
as filler instead of the default 0. You must use
the /L switch for FM encoding mode, no default
formats will use the FM mode.

Normally, a diskette is formatted using MFM
encoding. Only 8" single sided disks have
previously supported FM mode. When using FM
mode, only half as many bytes will fit on each
track, so it is uncertain why anyone would
choose it for any other reason than testing or
just curiosity.

The passed parameter is because our 1797 chip
will support two different filler bytes in FM
mode, 0 or 0FFh. Again, it is not certain why or
what difference the value of the byte makes to
the final format.

As a final note and passing thought for further
discussion, this switch permits us to change the
encoding strategy to all FM, perhaps providing
some degree of security, similar to encryption.

      /M     - Create single-sided disk on
double-sided media. This switch is always
necessary on 3-1/2" or 5-1/4" media, and for old
5-1/4" media, to permit using a double- sided
diskette in an old single-sided drive. It is
also required on double sided 8" media when you
want to force single sided format.

However, because 8" drives differentiated
double-sided media from single-sided media by
the location of the diskette's sector holes,
this may not work on single-sided drives.

      /N     - Suppress the onscreen prompts.
This affects some of the questions asked and
some of the logic used to process the other
switches:

Command line drive - If no command line drive is
given, you will be prompted for the drive to
format and be instructed to place the media to
format in the drive, regardless of the condition
of /N.

If the command line drive given is NOT the
"default" drive, no prompt for media to format
is given, regardless of the condition of /N.

If it is the "default" drive and /N is used,
the prompt to insert the correct media will be
skipped.

If write protected/no media is detected, you
will be prompted or re-prompted for media to
format regardless of the condition of the /N
switch.

Invalid/Marginally desirable Switch values -
With some of the switches that support para-
meters, a check is made for invalid values and
marginally desirable values. If the /N switch is
detected, the questions to verify the invalid or
undesirable values will be skipped, and it is
assumed the value to be correct or, if not, then
abort the program.

Display of disk characteristics - After
processing all command line switches and
detection of media type, the physical and
logical values that are going to be used to
create the newly formatted disk are displayed.
If the /N switch is detected, the question
requiring the {RETURN} key to continue will be
skipped.

      /O[n]  - Where n is the number of Sectors
Per Track desired. Early DOS used 8 sectors per
track; later DOS used 9 sectors per track.

Use this switch to override the SPT default or
if n=0 use the maximum possible. If no switch is
given, the defaults are determined by sector
size, FM/MFM mode, transfer rate, and RPM
according to the following table:

  Xfer/BPS    MFM-300 MFM-360 FM-300 FM-360
  250K  128    26      26      13      13 
  250K  256    16      13       8       6 
  250K  512     9       7       4       3 
  250K 1024     5       4       2       2 
  500K  128    52      52      26      26 
  500K  256    32      26      16      13 
  500K  512    18      15       9       7 
  500K 1024    10       9       5       4 

If a value of 0 is given or no value is given,
the maximum possible Sectors Per Track is
determined, given the drive's specific RPM
detected and the minimum gaps required by our
1797 chip on the Z-207 floppy controller card.

Interleave might be needed to avoid the possi-
bility of one rotation for every sector read
when using the maximum possible sectors.

CAUTION: If you use the maximum SPT, the drive's
RPM becomes a major factor. A slower drive will
permit more sectors per track than a faster one.
If the disk is later used on a faster drive, it
MAY still be readable, but writing MAY make the
disk unusable!!

There are a couple of exceptions for the use of
this table. If you specify 77 tracks on a high
density disk or it is an 8" drive, 8 SPT is
forced assuming the old Zenith formats.

5



      /P     - Updates old, used disks with the
new "PC" style Boot Record without losing the
previously written data. No alteration of either
the physical or logical characteristics are
permitted, as this would cause the data to
become invalid.

This just writes the bootloader to sector 0 on
the disk. No verification is permitted either,
as a newly detected bad sector may be assigned
to a valid data file.

      /Q     - Fill each sector with location
info Trk/Side/Sec/SecSize. This is only valid if
you are doing a low level format.

For all sectors not in the system area, boot-
loader, FAT's and Root Directory, ASCII text
identifying the physical location of each sector
is written by the write track (format) command
instead of all 0E5h's.

This can be useful if you are trying to locate
specific bad regions on a track by using the
RDTRACK utility.

      /R[n]  - Where n is the number of Reserved
Sectors. The default is 1, reserving one sector
of 512 bytes.

If no /R switch is given, it is assumed that the
disk should be bootable. This requires the 512
byte boot loader.

If 128 byte sectors were used, 4 are reserved.

If 256 byte sectors were used, 2 would be
reserved.

If 512 or 1024 byte sectors were used, then 1
would be reserved.

If /R is given without a number, then 1 is
assumed.

To eliminate bad sectors from the FAT's and Root
Directory, you may give more than is required,
but sector 0 must always be good.

      /S[n]  - Special CP/M media, where FM
encoding is used for track 0/side 0 and MFM
encoding is used for the rest of disk.

No bootloader is written and no verification is
performed. While this may not have any real use,
putting FM on track 0 and MFM on the rest of the
disk is a valid CP/M format.

You may specify the sector size for track 0/side
0 with the n parameter: 0=128; 1=256; 2=512;
3=1024 bytes/sector.

You can further specify SPT (Sectors Per Track)
on track 0/side 0 with the /Z switch.

      /T[n]  - Where n is the number of Tracks.
The default is 40 tracks on an 80 track device.

If no switch is given, 40, 80 and 77 tracks are
assumed depending on the device type.

If only /T is given without a number specified,
double stepping is assumed (i.e. 360K media in
an 80 track device).

Many drives will format some additional tracks -
some 80 track drives will format 82 tracks, but
be sure that verify does not mark all sectors on
the additional tracks as bad.

      /U     - Do NOT Double Step when the
number of tracks is less than 1/2 of total.

In some cases, GEMINI for example, not double
stepping will allow the use of 80 track devices
with simulated 40 track media on the first half
of the disk.

      /V[n]  - Where n can be 0-7; n=0 gives NO
verification.

With the deteriorating condition of our 20 year
old media and the fact that we are finding it
difficult to buy new media, quite a few VERIFY
options have been added so we might have a
better chance of identifying bad sectors and
still be able to use the old media.

If the /V switch is not specified, "Verify After
Format" is assumed. If you really do not want to
verify at all, you must specify n=0 (/V0).

The value for n is actually using a binary bit
pattern to provide greater flexibility in our
verification choices. The bits are defined as:

  bit 0 (001)  Verify After Format, after
               the complete disk has been
               formatted. 
  bit 1 (010)  Verify With Format, after
               each track has been formatted.
  bit 2 (100)  Verify With add'l Write, after
               each track has been written.

The values for n therefore become: 
 
  n=0 (000)    No verification is done.
  n=1 (001)    Verify After Format, after
               the complete disk has been
               formatted.
  n=2 (010)    Verify With Format, after
               each track has been formatted.
  n=3 (011)    Verify With Format and
               Verify After Format.
  n=4 (100)    Verify With add'l Write,
               after each track has been
               written.
  n=5 (101)    Verify After Format and
               Verify With Write
  n=6 (110)    Verify With Format and
               Verify With add'l Write
  n=7 (111)    Do all three verifies.

Verify Descriptions:
 
"Verify With Format" is the first available
verify. It is not valid with the /C switch, and
must be given for the /H switch to be meaning-
ful. This verifies each track immediately after
it has been formatted.

6



If an error is found, and you have specified the
/H switch, we can attempt to re-format the track
and then re-verify.

Not until all attempts have failed will the
sector be marked bad in the FAT. If a bad sector
is located that is needed for the boot loader,
the FAT's, or the Root Directory, ZFMT207 is
immediately aborted with a message.

You may still be able to use the disk if you
reduce the size of the FAT's, the number of
FAT's, or the size of the Root Directory. You
may also extend the size of the reserved area,
past the bad sector, and still be able to use
the disk.

"Verify After Format" is the next available
verify. This is the default verify and identical
to the original verify in FORMAT. It has an
advantage of time, in that it might catch some
problems associated with what may be called
"short term magnetic fade".

Some disks with bad sectors do not show up bad
in the "Verify With Format" test, but do show up
bad just a few minutes later in the "Verify
After Format" test. The extra time may allow the
bad sector's magnetic image to fade just enough
so that it is no longer reliable.

This verify is also appropriate for a "longer
term magnetic fade" test, but you would have to
reformat the disk with the /C switch a day or
week later.

"Verify With Write" is the last verify. Because,
up to this point, we have not actually done a
"write to sector" on the newly formatted disk,
we can not be absolutely certain that the 1797
chip will succeed in creating a valid CRC and be
able to read it back.

So we write each track and then verify each
track before stepping to the next track. If
either the write or the verify shows a bad
sector, it is marked in the FAT.

For an even more comprehensive verify, please
see the Verify Batch File Example discussed at
the end of this article.

      /X[n]  - Extended format options, where
each value of n allows setting the sector size:
0=128, 1=256, 2=512, 3=1024 bytes/ sector. The
default is n=3, 1024 bytes/ sector.

If the /X switch is not given, 512 bytes/sector
is assumed for 3-1/2" and 5-1/4" disks. For 8"
disks 1024 bytes is assumed for MFM and 128
bytes/sector for FM.

If only /X is given without the parameter n,
1024 bytes/ sector(3) is assumed. 
 
      /Y[n]  - Where n can be any number, 0 to
16; to use 0FnH for the FAT ID instead of 0F8H.

The media ID byte or FAT ID is the first byte of
the FAT and is used in earlier versions of DOS
to identify the format of the disk.

It can be used by our latest BIOS for the same
purpose, if the sector 0 becomes unreadable.

This switch is necessary for one of Zenith's old
formats that used the incorrect FAT ID - double
density, 96 tpi(80 track), 8 SPT double sided
disk. Zenith originally used 0FDh, and later
changed it to 0FBh.

To create the old Z-DOS one-sided, 8 SPT, 180K
disk, use /Y13/O8. 

The n can be any number from 0-16, where n=0
gives 0F0h ... n=16 gives 0FFh. The standard
Media ID bytes are as follows:

    0F0h - 3.5" Floppy 2-sided, 18 SPT
    0F1h - 0F7h  Have no standard meaning
    0F8h - Fixed Disk, or non standard
           floppy format
    0F9h - 96tpi 2-sided, 9 SPT (720K)
    0FAh - 96tpi 1-sided, 8 SPT (320K)
    0FBh - 96tpi 2-sided, 8 SPT (640K)
    0FCh - 48tpi 1-sided, 9 SPT (180K)
    0FDh - 48tpi 2-sided, 9 SPT (360K)
    0FEh - 48tpi 1-sided, 8 SPT (160K)
    0FFh - 48tpi 2-sided, 8 SPT (320K)

      /Z[n]  - Track Zero SPT (Sectors Per
Track) if Special CP/M media. The default is 26.

This switch is only valid if /S, Special CP/M
media, is also specified. It works like the /O
switch, so that you may select how many Sectors
Per Track to use on track 0/side 0 when creating
special CP/M media.

If n = 0 the maximum sectors per track is used
(see the explanation for switch /O[n]).

If n is not given, 26 Sectors Per Track is
assumed.

Other Information

Two boot loaders presently exist. One if the
total size of the reserved area is less than 512
bytes (not enough space to be bootable), and the
second if the reserved area is greater than or
equal to 512 bytes.

The second boot loader is suitable for all our
versions of Z-DOS and MS-DOS, so it is no longer
necessary to format a disk with a specific
version of FORMAT.

If you were creating a disk for Z-DOS, or
Version 2 or 3 of MS-DOS using the original
BIOS, IO.SYS had to be the first entry in the
Root Directory and it had to be contiguous.
MSDOS.SYS had to be the second entry in the Root
Directory and it also had to be contiguous. The
SYS command was required to transfer the system
files correctly to the new disk.

Z-DOS Verson 4 no longer has any restrictions
for any of the system files, so you can just use
the COPY command.

7



It is also no longer required that IO.SYS be the
first entry in the Root Directory or for IO.SYS
to be contiguous because the new boot loader
searches for IO.SYS and now decodes the FAT. 

If the total bytes in the reserved area is less
than 512 bytes, the "small" boot loader is used.
It has enough information for DOS/BIOS to use
the disk as a data disk, but it not bootable.

If you try to boot from the disk, "TOO SMALL" is
displayed on the screen and you are returned to
the Monitor hand prompt.

Media Types Supported

    1 or 2 sided 8",
    1 or 2 sided 5 1/4" high/low density
    1 or 2 sided 3 1/2" high/low density

Default Formats Supported

Any media created can be used by BIOS version 4.
The defaults used if no or incomplete switches
are given are set up so that the media can also
be read on a "PC".

There are a couple of "incompatibilities" with
our older versions of Z-DOS and MS-DOS (unique
FAT ID, number of Directory Entries and Cluster
Factor):

    *  Z-DOS double density, 96 tpi (80
       track), 8 SPT double sided disk
       (Use /Y13/O8)
    *  Ver2 & 3 MS-DOS 96tpi double sided,
       extended 9 SPT (Use /D9/K2)

Otherwise the switches are fairly straight
forward for creating standard media types for
our Versions 1, 2, 3 and 4 of Z-DOS/MS-DOS.

ZFMT207 Examples

At the end of this article is a long reference
table of all the media supported by each DOS
version. Each disk type also has the specific
ZFMT207 command given with the necessary
switches provided.

Let's go through a couple of examples.

NORMAL 5-1/4" DISKETTE:

Assuming drive A is our 5.25" drive, to create a
normal, 360K disk, place a diskette in drive A
and type the command:

    ZFMT207

The computer responds with:

    Which Floppy DRIVE to Format (DOS drive letter)?
    Place DISK to Format in Drive _

When you press {A}, A is placed at the underline
position above.

The computer proceeds to verify the disk is in
the drive, and responds with:

    Verifying Disk in Drive, Checking Media Type....
    Will perform LOW LEVEL format on:
    LOW Den  48tpi 5 1/4" Drive, VERIFY=Aftr Fmt;
    Using 250K xfer, MFM mode, 40trks,
      09spt, 512bps, 2sides, 1base
    7 RootDir(112 entries), 2spc, 02 fats,
      2 spf, 01 reserved, 0FDh MediaID
    Hit RETURN to continue, or any key to abort.

When you press {RETURN}, the computer responds
with:

    Formatting Track xxx Side x...
 
Where 'xxx' represents the track number and
'x' blinks 0 and 1 as the format operation
progresses. After the format is complete, the
computer begins the verification as requested
and displays:

    Verifying Track(Side) @ Sector xxxx

Where 'xxxx' represents the climbing sector
numbers as each is checked. As bad sectors are
located, each is listed as:

    Verify Bad Sector  xxxx, will be marked
    BAD in the FAT(s).

And the verification continues until the last
message is displayed:

    Disk successfully created.
    Found  x new bad clusters.

And you are returned to the DOS prompt. At this
point, ZFMT207 is complete.

Now you can run DIR or ZDIR to see the space
available on the disk, or run CHKDSK for a more
complete listing of the status. As mentioned
earlier, if you want a bootable disk, you must
run SYS, to place the system files properly on
the disk, by using a command such as:

    SYS E: A: /M/C

Which, if you don't remember, copies IO.SYS
from drive E: to drive A: as the first file;
MS-DOS.SYS as the second, and COMMAND.COM as
the third. While Z-DOS version 4 no longer
requires the files to be contiguous and in
that order, the other versions of DOS do,
so it's nice to stay in that habit of placing
them there.

Also, if you use labels, run the LABEL utility
to place a label on the new disk.

This first example used the most basic of
ZFMT207 commands.

Let's do another with a switch.

8



LOW DENSITY FM 5-1/4" DISKETTE

Assuming drive A is our 5.25" drive, to create a
low density, 160K disk, place a diskette in
drive A and type the command: 

    ZFMT207 A:/L

The A: tells the computer that we will be using
drive A: for this operation and switch /L will
use the archaic FM mode for the operation.
The computer responds with:

    Verifying Disk in Drive, Checking Media Type.... 
    Will perform LOW LEVEL format on:
    LOW Den  48tpi 5 1/4" Drive, VERIFY=Aftr Fmt;
    Using 250K xfer, FM mode, 40trks,
      04spt, 512bps, 2sides, 1base
    4 RootDir(64 entries), 1spc, 02 fats,
      1 spf, 01 reserved, 0FEh MediaID
    Hit RETURN to continue, or any key to abort.

When you press {RETURN}, the computer responds
with:

    Formatting Track xxx Side x...

After the format, the computer begins the
verification:

    Verifying Track(Side) @ Sector xxxx

When complete, the computer displays:

    Disk successfully created.
    Found  x new bad clusters.

And you are returned to the DOS prompt. ZDIR
would show 157Kb free at this point. After you
ran SYS and loaded the Z-DOS v4 system files,
you would be down to about 34Kb free! Isn't
progress in technology great!

Ok, enough fun. Let's try some more practical
examples.

HIGH DENSITY 3-1/2" DISKETTE

Assuming drive B is our 3.5" drive, to create a
standard high density, 1.4Mb disk, place a
diskette in drive B, and type the command:

    ZFMT207 B:

The computer responds with:

    Verifying Disk in Drive, Checking Media Type....
    Will perform LOW LEVEL format on:
    DUL Den  135tpi 3 1/2" Drive, VERIFY=Aftr Fmt;
    Using 500K xfer, MFM mode, 80trks,
      18spt, 512bps, 2sides, 1base
    14 RootDir(224 entries), 1spc, 02 fats,
      9 spf, 01 reserved, 0F0h MediaID
    Hit RETURN to continue, or any key to abort.

When you press {RETURN}, the computer responds
with:

    Formatting Track xxx Side x...
    Verifying Track(Side) @ Sector xxxx
    Disk successfully created. 
    Found  x new bad clusters.

And you are returned to the DOS prompt.
ZDIR would show 1424Kb free at this point.

While this high density disk is in the drive,
what would happen if we tried formatting a low
density disk? Let's see...

    ZFMT207 B:/A0

The computer responds with:

    Verifying Disk in Drive, Checking Media Type....
    Will perform LOW LEVEL format on:
    DUL Den  135tpi 3 1/2" Drive, VERIFY=Aftr Fmt;
    Using 250K xfer, MFM mode, 80trks,
      09spt, 512bps, 2sides, 1base
    7 RootDir(112 entries), 2spc, 02 fats,
      3 spf, 01 reserved, 0F9h MediaID
    Hit RETURN to continue, or any key to abort.

When you press {RETURN}, the computer responds
with:

    Verify Bad Sector xxxx, ERROR: in
    Bootloader, FAT(s) or Root Directory!

The program figured out that the media was not
correct and barfed! The same occurred when I
tried the reverse - formatting a double density
disk to high density.

Note: When the program is checking Media Type,
it is checking to see if the diskette had been
previously formatted. If no switches are given
and the program can not find the parameters
of a previous format, such as when they were
destroyed in a manner similar to the above
experiment, the program will get as far as,
"Verifying Disk in Drive, Checking Media
Type...." and display the error:

    ERROR: Must use /A switch with Unformatted
      /Unknown Media in Dual Density Drive

and return you to the DOS prompt.

Affect of Sector Size on Disk Capacity

Here is a question for you. It's fairly common
knowledge that small files waste less space if
the sector size is small, right?

If you fill a disk having 1024 bytes per sector
with a bunch of 100 byte files, you are going to
waste a lot of space, because the minimum space
the 100 byte file can fill is one sector - or
1Kb of space.

If the disk had 512 bytes per sector, you could
theoretically place twice as many 100 byte files
on it, because each file is only using 512
bytes. If the disk had 256 byte sectors... well,
you get the point.

Why not use a smaller number of bytes per sector
than the standard 512? Well, let's try 128 byte
sectors on our high density diskette by using
the /X0 switch, and we will even save more space
by using only one FAT (the /F switch):

    ZFMT207 B: /F/X0

9



The computer responds with:

    Verifying Disk in Drive, Checking Media Type....
    Will perform LOW LEVEL format on:
    DUL Den  135tpi 3 1/2" Drive, VERIFY=Aftr Fmt;
    Using 500K xfer, MFM mode, 80trks,
      52spt, 128bps, 2sides, 1base
    28 RootDir(112 entries), 1spc, 01 fats,
      128 spf, 04 reserved, 0F8h MediaID
    Hit RETURN to continue, or any key to abort.

When you press {RETURN}, the computer responds
with:

    Formatting Track xxx Side x...
    Verifying Track(Side) @ Sector xxxx
    Disk successfully created.
    Found  x new bad clusters.

And you are returned to the DOS prompt. Any
guess what ZDIR would show for the disk's free
memory? Remember, for our standard disk, it was
1424Kb free at this point.

Well, if you guessed smaller, you would be
right. It shows 1020Kb free!! Why?

Well, each sector has to have a gap between it
and the next for separation. Due mostly to drive
rotational speed tolerances, head tolerances,
and other factors, such as interleave, several
bytes separate one sector from the next. This
becomes wasted space that becomes a major factor
when the sector size is so small!

If we selected 1024 byte sectors per track by
using the /X3 switch, the parameters become:

    Verifying Disk in Drive, Checking Media Type....
    Will perform LOW LEVEL format on:
    DUL Den  135tpi 3 1/2" Drive, VERIFY=Aftr Fmt;
    Using 500K xfer, MFM mode, 80trks,
      10spt, 1024bps, 2sides, 1base
    4 RootDir(128 entries), 1spc, 01 fats,
      3 spf, 01 reserved, 0F8h MediaID
    Hit RETURN to continue, or any key to abort.

And when the formatting was completed, ZDIR
would show 1592Kb free at this point. So, you
can see why the selection of 512Kb for sector
size is a trade-off.

DOUBLE DENSITY 3-1/2" DISKETTE

Assuming drive B is our 3.5" drive, to create a
standard double density, 720Kb disk, place the
appropriate double density diskette in drive B
and type the command:

    ZFMT207 B:/A

Remember, the /A0 switch really isn't necessary,
as the program will use the previous format
parameters from the disk, or it will default to
the low density setting if the disk has not been
formatted before. The computer responds with:

    Verifying Disk in Drive, Checking Media Type....
    Will perform LOW LEVEL format on:
    DUL Den  135tpi 3 1/2" Drive, VERIFY=Aftr Fmt;
    Using 250K xfer, MFM mode, 80trks,
      09spt, 512bps, 2sides, 1base

    7 RootDir(112 entries), 2spc, 02 fats,
      3 spf, 01 reserved, 0F9h MediaID
    Hit RETURN to continue, or any key to abort.

When you press {RETURN}, the computer responds
with:

    Formatting Track xxx Side x...
    Verifying Track(Side) @ Sector xxxx
    Disk successfully created.
    Found  x new bad clusters.

And you are returned to the DOS prompt. ZDIR
would show 713Kb free at this point.

Media Supported by DOS Version

This is a complete list of the media types
supported by our previous DOS versions 
and the ZFMT207 command, with appropriate
switches, required to create each disk.

Double stepping 40 track media in an 80 track
device would also require the /T switch.

"x:" is the drive you want to format.

--Z-DOS--

96 tpi, double density, double side <0FDh>
DR5D8 LABEL BYTE

DW 512 ; Sector size
DB 4 ; Cluster factor
DW 1 ; Reserved sectors
DB 2 ; # of FAT's
DW 144 ; # of dir entries
DW 80*8*2 ; # of physical

sectors (1280)

    ZFMT207 x: /08/Y13

48tpi, double density, single side <0FEh>
DR5S4 LABEL BYTE

DW 512 ; Sector size
DB 1 ; Cluster factor
DW 1 ; Reserved sectors
DB 2 ; # of FAT's
DW 64 ; # of directory entries
DW 8*40 ; # of physical

sectors (320)

    ZFMT207 x: /08/M

48tpi, double density, double side <0FFh>
DR5D4 LABEL BYTE

DW 512 ; Sector size
DB 2 ; Cluster factor
DW 1 ; Reserved sectors
DB 2 ; # of FAT's
DW 112 ; # of directory entries
DW 8*40*2
; # of physical

sectors (640)

    ZFMT207 x: /08

10



8" double density, double side
DR8D2 LABEL BYTE

DW 1024 ; Sector size
DB 1 ; Cluster factor
DW 1 ; Reserved sectors
DB 2 ; # of FAT's
DW 192 ; # of directory entries
DW 77*8*2 ; # of physical

sectors (1232)

    ZFMT207 x:

8" single density, single side
DR8S1 LABEL BYTE

DW 128 ; Sector size
DB 4 ; Cluster factor
DW 4 ; Reserved sectors
DB 2 ; # of FAT's
DW 104 ; # of directory entries
DW 77*26 ; # of physical

sectors (2002)

    ZFMT207 x: /L      (Single Sided Media)
    ZFMT207 x: /L/M    (Double Sided Media)

--VER2 & VER3--

48tpi double density, single side (160K)
BPB0 LABEL NEAR

DW 512 ; BPB_SECSZ
DB 1 ; BPB_SPAU
DW 1 ; BPB_RES
DB 2 ; BPB_NFATS
DW 64 ; BPB_DIRENTS
DW 8*40 ; BPB_SECS(320)
DB 0FEh ; BPB_MBYTE
DW 1 ; BPB_FATSECS

    ZFMT207 x: /O8/M

48tpi extended density, single side (180K)
BPB0E LABEL NEAR

DW 512 ; BPB_SECSZ
DB 1 ; BPB_SPAU
DW 1 ; BPB_RES
DB 2 ; BPB_NFATS
DW 64 ; BPB_DIRENTS
DW 9*40 ; BPB_SECS(360)
DB 0FCh ; BPB_MBYTE
DW 2 ; BPB_FATSECS

    ZFMT207 x: /M

48tpi double density, double side (320K)
BPB1 LABEL NEAR

DW 512 ; BPB_SECSZ
DB 2 ; BPB_SPAU
DW 1 ; BPB_RES
DB 2 ; BPB_NFATS
DW 112 ; BPB_DIRENTS
DW 8*40*2 ; BPB_SECS(640)
DB 0FFh ; BPB_MBYTE
DW 1 ; BPB_FATSECS

    ZFMT207 x: /O8

48tpi extended density, double side (360K)
BPB1E LABEL NEAR

DW 512 ; BPB_SECSZ
DB 2 ; BPB_SPAU
DW 1 ; BPB_RES
DB 2 ; BPB_NFATS
DW 112 ; BPB_DIRENTS
DW 9*40*2 ; BPB_SECS(720)
DB 0FDh ; BPB_MBYTE
DW 2 ; BPB_FATSECS

    ZFMT207 x:

96tpi double density, double side (640K)
BPB3 LABEL NEAR

DW 512 ; BPB_SECSZ
DB 4 ; BPB_SPAU
DW 1 ; BPB_RES
DB 2 ; BPB_NFATS
DW 144 ; BPB_DIRENTS
DW 8*80*2 ; BPB_SECS(1280)
DB 0FBh ; BPB_MBYTE
DW 1 ; BPB_FATSECS

    ZFMT207 x: /O8

96tpi extended density, double side (720K)
BPB3E LABEL NEAR

DW 512 ; BPB_SECSZ
DB 4 ; BPB_SPAU
DW 1 ; BPB_RES
DB 2 ; BPB_NFATS
DW 144 ; BPB_DIRENTS
DW 9*80*2 ; BPB_SECS(1440)
DB 0F9h ; BPB_MBYTE
DW 2 ; BPB_FATSECS

    ZFMT207 x: /D9/K2

8" double density, double side
BPB2 LABEL NEAR

DW 1024 ; BPB_SECSZ
DB 1 ; BPB_SPAU
DW 1 ; BPB_RES
DB 2 ; BPB_NFATS
DW 192 ; BPB_DIRENTS
DW 77*8*2 ; BPB_SECS(1232)
DB 0FEH ; BPB_MBYTE
DW 2 ; BPB_FATSECS

    ZFMT207 x:

8" single density, single side, 4 reserved
BPB4 LABEL NEAR

DW 128 ; BPB_SECSZ
DB 4 ; BPB_SPAU
DW 4 ; BPB_RES
DB 2 ; BPB_NFATS
DW 104 ; BPB_DIRENTS
DW 77*26 ; BPB_SECS(2002)
DB 0FDH ; BPB_MBYTE
DW 6 ; BPB_FATSECS

    ZFMT207 x: /L      (Single Side)
    ZFMT207 x: /L/M    (Double Side)

11



8" single density, single side, 1 reserved
BPB4C LABEL NEAR

DW 128
; BPB_SECSZ
DB 4
; BPB_SPAU
DW 1
; BPB_RES
DB 2
; BPB_NFATS
DW 68
; BPB_DIRENTS
DW 77*26
; BPB_SECS(2002)
DB 0F8H
; *BPB_MBYTE*
DW 6
; BPB_FATSECS

    ZFMT207 x: /L/R/Y   (Single Side)
    ZFMT207 x: /L/R/Y/M (Double Side)

--VER4--

The following formats are created by default (no
switches) depending on the media type detected
(1 or 2 sided, high or low density) and the
drive type (40/80 track or 8"). MFM is always
assumed. 512 bytes per sector are assumed on
3.5" and 5.25", 1024 bytes per sector on 8"
drives.

3.5 Inch
Formatted Capacity          720K    1.44MB
# of Heads (Sides)            2         2
# of Cyls (Tracks)           80        80
# of Sectors/Track            9        18
Total # of Sectors         1440      2880
# Sectors/Cluster             2         1
# Sectors/FAT                 3         9
# of FAT Copies               2         2
# of Root Dir Sectors         7        14
# Reserved Sectors            1         1
# of Bytes/Sector           512       512
# Root Dir Entries          112       224
Media Descriptor             F9        F0
Recorded Density MFM       250K      500K

5.25 Inch
Formatted Capacity      360K    720K   1.2MB
# of Heads (Sides)         2       2       2
# of Cyls (Tracks)        40      80      80
# of Sectors/Track         9       9      15
Total # of Sectors       720    1440    2400
# Sectors/Cluster          2       2       1
# of Sectors/FAT           2       3       7
# of FAT Copies            2       2       2
# of Root Dir Sectors      7       7      14
# Reserved Sectors         1       1       1
# of Bytes/Sector        512     512     512
# Root Dir Entries       112     112     224
Media Descriptor          FD      F9      F9
Recorded Density MFM    250K    250K    500K

8 Inch
Formatted Capacity      616K   1.232MB
# of Heads (Sides)         1        2
# of Cyls (Tracks)        77       77
# of Sectors/Track         8        8

Total # of Sectors       616     1232
# of Bytes/Sector       1024     1024
# Sectors/Cluster          1        1
# Reserved Sectors         1        1
# Sectors/FAT              1        2
# of FAT Copies            2        2
# Root Dir Entries       128      192
Media Descriptor          F8       FE
Recorded Density MFM    500K     500K

ERRORLEVEL Exit Codes

To facilitate the use of Batch files to format
disks, the following DOS ErrorLevel exit codes
are set when ZFMT207 terminates:

    255     ErrorLevel Shows aborted by user
            (^C or not hitting RETURN key)
    254     ErrorLevel Shows bad bios
            version exit
    253     ErrorLevel Shows bad drive
            specified (non Z-207 drive)
    252     ErrorLevel Shows Bad or
            inappropriate media for switches
    251     ErrorLevel Shows Bad low level
            format
    250     ErrorLevel Shows Bad sector
            in bootloader, FAT, or Root
            Directory
    240-249 Reserved for future use
    1-239   ErrorLevel Shows # of new bad
            clusters detected, > 239 = 239.
    0       ErrorLevel Shows no new bad
            clusters were detected.

The following is an example of how to use a
batch file and the errorlevel exit variable to
keep formatting a disk until no new bad sectors
are found.

We use the /N switch to suppress the request
for the RETURN key, the /G to use the existing
bad clusters in the FAT, and I/O redirection to
the NUL device to not display each of the bad
sectors found.

Verify Batch File Example

    @ECHO OFF
    ZFMT207 A:/N/V7 >NUL
    IF ERRORLEVEL 240 GOTO END
    IF NOT ERRORLEVEL 1 GOTO END
    :REFORMAT
    ZFMT207 A:/C/N/V5/G >NUL
    IF ERRORLEVEL 240 GOTO END
    IF ERRORLEVEL 1 GOTO REFORMAT
    :END
    ECHO.

As you can see, this batch file does extensive
testing on any suspect floppy disk by performing
all three verification checks (/V7 switch) as it
formats the diskette the first time. Then if one
or more bad sector(s) are found, they are added
to the existing Bad Sector Table and the program
performs the format again.

12



During subsequent format passes, the program
will use Verify After Format and Verify With
Write (/V5 switch) until a format operation is
completed with no additional bad sectors found.

Final Note

While testing has been tried on as many media
types and switches as drives were available,
there are some odd combinations that were
missed. So if you find some switch combination
that behaves strangely, please report them to
the “Z-100 LifeLine”.

Messages

The following messages have been taken from the
source code and are listed here for reference
purposes only.

  * Z-100 Format Z207 aborted by user.

  * Z-100 Format Z207 only works with BIOS
    version 4.

  * Will create CP/M style data disk
    (FM track 0, MFM rest of disk) on:

  * Will perform HIGH LEVEL format
    (Clear Directory & FAT, Update "PC"
    Loader) on:

  * Will UPDATE "PC" style loader
    (data is retained) on:

  * Which Floppy DRIVE to Format
    (DOS drive letter)?
    Place DISK to Format in Drive

  * Verifing Disk in Drive, Checking
    Media Type....

  * Disk successfully created.
    Found xxxxx new bad clusters.

  * Will perform LOW LEVEL format on:

LOW Den  48tpi 5 1/4" Drive
LOW Den  96tpi 5 1/4" Drive
LOW Den 135tpi 3 1/2" Drive
HGH Den 135tpi 3 1/2" Drive
DUL Den  96tpi 5 1/4" Drive
DUL Den 135tpi 3 1/2" Drive
HGH Den 135tpi 3 1/2" Drive
HGH Den  96tpi 5 1/4" Drive
     48tpi Eight inch Drive

  * ERROR: Formatting track, check
    drive RPM!

  * ERROR: Sector #'s 245(F5h)-254(FEh)
    are invalid, Do you want to continue?

  * ERROR: Drive shows Not Ready.

  * ERROR: Disk is Write Protected.

  * ERROR: Cannot use Unknown Media for
    Update or Clear.

  * ERROR: Media incompatible with switches.

  * ERROR: No 96tpi Media in 48tpi drive
    for Update or Clear.

  * ERROR: No Special CP/M Media for
    Update or Clear.

  * ERROR: Must use /A switch with
    Unformatted/Unknown Media in
    Dual Density Drive

  * Verifying Track(Side) @ Sector xxxxx

  * Bad Sector xxxxx,

  * skipping special CP/M

  * skipping in reserved area

  * CLUSTER already marked BAD.

  * will be marked BAD in the FAT(s).

  * ERROR: Bad Sector Limit exceeded.

  * ERROR: in Bootloader, FAT(s) or
    Root Directory!

  * Found xxxxx bad clusters in previous
    FAT, marking xxxxx new bad clusters.

I hope this article helps explain this complex
utility. If you have any questions or comments,
please email me at:

z100lifeline@swvagts.com

Cheers,

Steven W. Vagts

13

mailto:z100lifeline@swvagts.com

