
2022

 March 2022

#WEB
 This article was first published in issue #131, March 2020

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ZBASIC CAKE.BAS

by Steven W. Vagts
Editor, “Z-100 LifeLine”

ZBASIC CAKE.BAS

The ZBASIC CAKE.BAS program was mostly a quick
program to make issue #130 a bit more special.
It was actually my wife’s idea. However, it felt
good to get back into ZBASIC and I’ve always
been impressed with the graphics capability of
such an early application. Perhaps it is nothing
compared to today’s standards, but in 1982?

If you took the time to play with it, I hope you
found it interesting. If you no longer have
ZBASIC capability, I understand, but hope that
you will follow along with my explanation and
reasoning. I’m sure you can probably find better
ways to accomplish the same graphics affects,
but that is one of the things that I like about
ZBASIC - there are usually several ways to
accomplish something, and usually there are
tradeoffs on which way you may choose to go.

So let’s discuss some of the more interesting
aspects of this program.

First off, I wish everyone would include a Title
block in their program. In addition to the
Title, it should include the author & perhaps
contact info & the date, but most importantly,
what computer and version of the programming
language is being used. BASIC programs espec-
ially seem to lack this important piece of
information, and there are so many different
versions, most of which have certain programming
quirks that a person must figure out. Will it
run with BASIC-80, QBASIC, GWBASIC, BASIC-80,
etc.?

This CAKE.BAS program uses the H-19 ESCape codes
and graphics characters, so it may work on the
H-8 or H-88/89/90 using BASIC-80 or something
similar. It will NOT work with anything later
or some form of the PC-clone BASICs.

Following the Title block, I like to set up the
various equates to use the ESCape codes that I
will be using. So, generally starting at line
100, I like to define the ESCape character, E$,
and then the ESCape codes to turn ON/OFF Reverse
Video, Graphics Mode, sometimes even Colors to
be used. I also like to initialize the ZBASIC
RANDOMIZE function, in this case with line 130.

Looking in the ZBASIC manual, I could find no
mention of RANDOMIZE TIME/DATE. So, I am not
sure where I picked up this statement.

The reference manual only talks about the
<expression> which is used as a random number
seed value, and the examples simply show a
number. But if you use the same number each
time, the random number generated has the same
number every time, and you have to remember to
give a different number each time the program
 is run.

Just using RANDOMIZE TIME will not work; it
generally gives the error, “Overflow in 130”.
For example, when I used the ZBASIC command
PRINT TIME, DATE, and TIME/DATE, it gave:

61279     16      3829.938

The Random Number Seed is limited to -32768 to
+32768, hence the overflow error.

If you have not already done so, I recommend
adding a note to the RANDOMIZE Statement of the
Reference Guide, page 10.143 of the ZBASIC
manual, “For a suitable Random Number Generator,
use the statement ‘RANDOMIZE TIME/DATE’”.

Next, the COLOR statement is obvious; it sets
the screen colors. COLOR 1,3 sets Blue on a Cyan
background.

1



But the LINE statement of line 1010, could use
some explanation. The LINE statement takes the
form:
    LINE [(X1,Y1)]-(X2,Y2) [,[attribute]][,b[f]]

Where:
   X1 and X2 are a column position
   Y1 and Y2 are a row position
   Attribute is a screen color
   B[f] is a fill background color

It permits the drawing of lines in absolute and
relative locations on the screen.

LINE is the most powerful of the graphics
statements. It is so important to my program
that I will repeat the reference guide, page
10.90, here verbatim, with a few of my comments
interspersed.

It allows a group of pixels to be controlled
with a single statement.

A Pixel is the smallest point that can be
plotted on the screen. If you get up close and
personal with your Z-100 screen or display, you
can make out the distinct dots of light that
make up a character. Each of these dots of light
is a pixel. The ZBASIC screen can display 25
lines of characters, each 80 characters long.
This gives us a screen 640 (80x8) pixels long x
225 (25x9) pixels tall. 

The simplest form of LINE is:
    LINE - (X2,Y2)

This will draw from the last point to the point
(X2,Y2) in the foreground attribute.

We can include a starting point also:
    LINE (0,0) - 639,224)

This will draw a diagonal line down the screen.

The statement:
    LINE (0,100)-(639,100)

will draw a horizontal bar across the screen,
100 pixels down from the top line of pixels
(about mid-screen).

We can append a color argument to draw the line
in green, which is color two:
    LINE (10,10)-(20,20),2

If we used a RND Function, we could make the
line appear anywhere on the screen in any random
color.

The RND Function takes the form RND(X) and
returns a random number between 0 and 1. The
same sequence of random numbers is generated
each time the program is run, unless the random
number generator is reseeded using the RANDOMIZE
statement discussed above.

However, X<0 always restarts the same sequence
for any given X. X=0 repeats the last number
generated. X>0 or X omitted generates the next
random number in the sequence.

For example, the statement:
    PRINT INT(RND*100)

will print a number between 0 and 100. The INT
function is used to restrict us to whole numbers
(drops any decimal amount).

So, getting back to displaying our random lines
and colors, we can use the program:
    10 CLS
    20 LINE -(RND*639,RND*224),RND*7
    30 GOTO 20

to draw lines forever on the screen using a
random color for each.

The final optional argument to LINE is “,b” for
a box, or “,bf” for a filled box. The syntax
indicates that we can leave out the attribute
argument and include the final argument as
follows:
    LINE (0,0)-(100,100),,b

will draw a box in the foreground attribute.

Or:
    LINE (0,0)-(200,200),2,bf

will draw a filled box with color attribute 2
(Green).

The “,b” tells BASIC to draw a rectangle with
the points (X1,Y1) and (X2,Y2) as opposite
corners. This avoids giving the four separate
LINE commands:
    LINE (X1,Y1)-(X2,Y2)
    LINE (X1,Y1)-(X1,Y2)
    LINE (X2,Y1)-(X2,Y2)
    LINE (X1,Y2)-(X2,Y2)

which perform the equivalent function.

The “,bf” means draw the same rectangle as “,b”,
but also fill in the interior of the box with
the selected color attribute.

When out of range coordinates are given in the
LINE command, the coordinate which is out of
range is given the closest legal value. In other
words, negative values become zero, Y values
greater than 224 become 224 and X values greater
than 639 become 639.

So, in our Cake program, the statement:
    1010 LINE (30,120)-(620,207),3,BF

draws our cake outline and fills in with Cyan.

To draw in our Cake message, we have the 2000
series of statements. The color of choice is set
by COLOR 1,3, which is Blue on Cyan background.

The LOCATE statement takes the form:
    LOCATE [row],[col][,[cursor]]

Where:
   Row is the screen line number between 1
   and 25 (not to be confused with pixel
   locations used elsewhere)
   Col is the screen column number between 1
   and 80.
   Cursor is set to indicate if it is visible
   or not. Zero is OFF, non-zero is ON.

2



The LOCATE statement moves the cursor to the
desired screen character position. Subsequent
PRINT statements begin placing characters at
this position. Optionally, it may be used to
turn the cursor ON or OFF.

So, our 2000 series statements place the cursor
at the desired location for each character to be
printed on the screen. The F$ puts us in Z-100
Graphics mode. The series of graphics letters is
used to print our message in characters 3 lines
high across the front of the cake.

When we are done, line #2075 is used to locate
to Home, turn OFF graphics and reset our screen
color to the default white on black background.

Now, it gets more interesting.

We want to fire rockets that explode in the
air in the form of fireworks! At a fireworks
display, we generally see a rocket fire into
the air, it explodes with a POP, and then the
remnants drift down until they burn out.
The series of statements beginning at line
number 2100 sets us up for the first.

GOSUB 6000 is just a simple routine to set a
random color for the rocket. You may notice that
I had to add +1 to the equation. It seems that
when INT drops the decimal, the number never
gets to show 7 (white), and I did not want to
show black on our black background. The simple
fix was just to add one.

GOSUB 5000 was just to place a time delay for
the rocket trail, the explosion, and the falling
embers.

Another consideration was that we could use a
random generated number and then an IF...THEN
GOTO statement to fire each rocket from a random
location on the cake. However, I found that when
I was done, there was enough randomness that I
did not need to make it any more complicated.

So I chose to fire the rockets from any letter
that may look like a rocket launcher - ‘Y’, ‘H’,
and ‘I’.

Two more comments of note, each rocket must be
fired twice, once with the random color, and
again at the default background color. This
erases the track of the rocket from the screen.

We must also note the location at the end of the
rocket’s track. We also need to convert the
screen position numbers! The LINE command uses
screen PIXEL positions, while the LOCATE command
uses screen CHARACTER positions.

If you choose the rocket positions correctly
(divisible by 9 and 8), the numbers are
converted in line number 7010 to give you whole
numbers for the explosion LOCATE command.
However, you could easily just use INT to drop
the decimal part of the location.

The last interesting element of the program is
the 7000 series of statements to create the
explosions.

As we did with the rocket trails, we need to
draw the initial explosion, erase it with the
next level of the explosion, erase that with the
next level of the explosion, etc., until the
last remnants of the explosion are deleted, for
5 levels. I liked the final affect.

I am sure there may be other ways to do this but
this worked to my satisfaction. Adjust the time
delay loop to adjust the timing if you wish.

That is about it. I hope you enjoyed the
program. I found I enjoyed dusting off ZBASIC
for this quick effort. Happy 100th issue to me.

Note: For the pictures only, I had to make some
changes to the program to leave the fireworks
displayed.

If you have any questions or comments, please
email me at:

z100lifeline@swvagts.com

Cheers,

Steven W. Vagts

3

mailto:z100lifeline@swvagts.com


CAKE.BAS is a ZBASIC program to celebrate the 100 th issue
of the Z-100 LifeLine with Steven Vagts as Editor

10   CLS
20   REM  -----------------------------------------------------------------------------
30   REM       CAKE.BAS   -   100th Issue with Vagts as Editor
40   REM                           By Steven Vagts, Editor, Z-100 LifeLine
50   REM                              211 Sean Way, Hendersonville, NC 28792
60   REM       ZBASIC program for the H/Z-100              January 15, 2020
70   REM  -----------------------------------------------------------------------------

100  REM  Set ESCape Codes
110  E$=CHR$(27): F$=E$+”F”: G$=E$+”G”: REM  E$=ESCape, F$=Graphics ON, G$=OFF
120  P$=E$+”p”: Q$=E$+”q”: REM  P$=Reverse Video ON, Q$=OFF
130  RANDOMIZE TIME/DATE

1000 REM  Write Cake Outline and fill in Cyan
1010 LINE (30,120)-(620,207),3,BF

2000 COLOR 1,3: REM Write Cake Message to screen in Blue on Cyan
2005 REM  You must get every space & character correct, as shown.
2010 LOCATE 15,9:   PRINT F$+”`  `  xy  }zzy }zzy y  x”
2015 LOCATE 15,37: PRINT ”}zzz` z`z }zzy z`z `  ` }zzy  xy  y  x”
2020 LOCATE 16,9:   PRINT ”vaat xaay }{{x }{{x  yx”
2025 LOCATE 16,37: PRINT ”}aaat  `  }{{x  `  vaat }  } xaay  yx”
2030 LOCATE 17,9:   PRINT ”`  ` |  } }    }     x”
2035 LOCATE 17,37: PRINT ”}{{{` {`{ }  y  `  `  ` }{{x |  }  x”
2040 LOCATE 19,12: PRINT ”zzx    x`  xzzy xzzy”
2045 LOCATE 19,37: PRINT ”}    z`z `zz `zz }    z`z }y  | `zz”
2050 LOCATE 20,12: PRINT ” x  aa  `  |  } |  }”
2055 LOCATE 20,37: PRINT ”}     `  vaa vaa }     `  } y | vaa”
2060 LOCATE 21,12: PRINT ”x{{    {`{ y{{x y{{x”
2065 LOCATE 21,37: PRINT ”}{{{ {`{ `   `{{ }{{{ {`{ }  y| `{{”
2070 LOCATE 23,37: PRINT G$+”By Steven Vagts, Editor, Z-100 LifeLine”
2075 LOCATE 1,1:     PRINT G$: COLOR 7,0

2100 REM  Draw a random color rocket firework.
2110 GOSUB 6000: LINE (348,126)-(352,27),C
2120 GOSUB 5000: LINE (348,126)-(352,27),0: YC=352: XC=27
2130 GOSUB 7000
2140 REM  Note I left the rocket trail in the cake to see where it is launched.

2200 REM  Draw another rocket...
2210 GOSUB 6000: LINE (67,126)-(56,27),C
2220 GOSUB 5000: LINE (67,126)-(56,27),0: YC=56: XC=27
2230 GOSUB 7000

2300 REM  Draw another rocket...
2310 GOSUB 6000: LINE (444,126)-(440,36),C
2320 GOSUB 5000: LINE (444,126)-(440,36),0: YC=440: XC=36
2330 GOSUB 7000

2400 REM  Draw another rocket...
2410 GOSUB 6000: LINE (254,126)-(344,54),C
2420 GOSUB 5000: LINE (254,126)-(344,54),0: YC=344: XC=54
2430 GOSUB 7000

2500 REM  Draw another rocket...
2510 GOSUB 6000: LINE (591,126)-(600,48),C
2520 GOSUB 5000: LINE (591,126)-(600,48),0: YC=600: XC=48
2530 GOSUB 7000

2600 REM  Draw another rocket...
2610 GOSUB 6000: LINE (469,126)-(480,27),C
2620 GOSUB 5000: LINE (469,126)-(480,27),0: YC=480: XC=27

4



2630 GOSUB 7000

2700 REM  Draw another rocket...
2710 GOSUB 6000: LINE (223,126)-(136,36),C
2720 GOSUB 5000: LINE (223,126)-(136,36),0: YC=136: XC=36
2730 GOSUB 7000

2800 REM  Draw another rocket...
2810 GOSUB 6000: LINE (560,126)-(304,27),C
2820 GOSUB 5000: LINE (560,126)-(304,27),0: YC=304: XC=27
2830 GOSUB 7000

2900 REM  Draw another rocket...
2910 GOSUB 6000: LINE (91,126)-(96,63),C
2920 GOSUB 5000: LINE (91,126)-(96,63),0: YC=96: XC=63
2930 GOSUB 7000

4980 COLOR 7,0
4990 END

5000 REM  Time Delay
5010 FOR I=1 TO 50: NEXT I
5010 RETURN

6000 REM  Get a random color.
6010 C=INT(RND*7)+1
6020 RETURN

7000 REM  Create Exploding Firework, make same color as rocket.
7010 REM  Convert XC=RowCoord & YC=ColCoord from LINE Statement.
7020 X=XC/9: Y=YC/8:  REM  X & Y must be whole numbers, no remainder.
7030 COLOR C,0:  REM  Recover color of rocket.
7040 LOCATE X-1,Y-3:  PRINT ”\ | /”
7050 LOCATE X,Y-5:     PRINT ”- (POP) -”
7060 LOCATE X+1,Y-3: PRINT ”/ | \”: GOSUB 5000

7100 REM  Overwrite POP with expanding graphics.
7110 LOCATE X-2,Y-5:  PRINT F$+” zy ` xz ”
7120 LOCATE X-1,Y-5:  PRINT ”   y`x   ”
7130 LOCATE X,Y-5:     PRINT ” aa   aa ”
7140 LOCATE X+1,Y-5: PRINT ”   x`y   ”
7150 LOCATE X+2,Y-5: PRINT ”  x ` y  ”+G$: GOSUB 5000

7200 REM  Overwrite last set with expanding explosion.
7210 LOCATE X-2,Y-5:  PRINT F$+”xz  `  zy”
7220 LOCATE X-1,Y-5:  PRINT ”|       }”
7230 LOCATE X,Y-5:     PRINT ” x     y ”
7240 LOCATE X+1,Y-5: PRINT ” |x   y} ”
7250 LOCATE X+2,Y-5: PRINT ” || ` }} ”
7260 LOCATE X+3,Y-5: PRINT ”  | ` }  ”+G$: GOSUB 5000

7300 REM  Overwrite last set with expanding explosion.
7310 LOCATE X-2,Y-5:  PRINT F$+”         ”
7320 LOCATE X-1,Y-5:  PRINT ”         ”
7330 LOCATE X,Y-5:     PRINT ”         ”
7340 LOCATE X+1,Y-5: PRINT ”         ”
7350 LOCATE X+2,Y-5: PRINT ” |     } ”
7360 LOCATE X+3,Y-5: PRINT ”  | ` |  ”
7370 LOCATE X+4,Y-5: PRINT ”  | ` |  ”+G$: GOSUB 5000

7400 REM  Overwrite last remnants of explosion.
7410 LOCATE X+2,Y-5: PRINT ”         ”
7420 LOCATE X+3,Y-5: PRINT ”         ”
7430 LOCATE X+4,Y-5: PRINT ”         ”

7500 RETURN

5


