
2022

 April 2022

#WEB
 This article was first published in issue #72, October 2000

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Calling .ASM Routines
From ZBASIC

by Steven W. Vagts
Editor, “Z-100 LifeLine”

Calling .ASM Routines
From ZBASIC

ZBASIC, like most BASICs and other high-level
languages, is able to call assembly language
routines. But I have always shied away from
doing any of this, because just reading the
procedures made my head swim.

I had resumed work on my Two-Terminal Program,
however, and quickly found myself up against
some limitations of ZBASIC. I decided I needed
to shake the cobwebs from my head and look into
creating a separate routine for displaying
information under ZBASIC.

Dusting off the books and manuals, I read the
very terse section in Appendix E of the ZBASIC
Manual, and quickly reaffirmed my belief that
this was not to be easy.

When we are done here, though, I hope you will
find the following useful and easier to under-
stand. Add this article to your ZBASIC Manual.
For those using ZBASIC without the manual, I
will start from scratch, so do not fear. The
manual is not required.

If you are ready, here we go...

Assembly Language Subroutines

All versions of Zenith BASIC have provisions for
interfacing with assembly language subroutines
via either the USR function or the CALL state-
ment.

The USR function allows assembly language sub-
routines to be called in the same way BASIC
Intrinsic Functions are called. However, it is
suggested that the old style user-call USR(n)
not be used.

The CALL statement is the recommended way of
interfacing 8086 machine language programs with
BASIC. It is compatible with more languages than
is the USR function call, it produces more
readable source code, and it can pass multiple
arguments.

The USR function procedures are outside the
scope of this article. Please refer to the
ZBASIC Manual for additional information on
these procedures.

Memory Allocation

Memory space must be set aside for an assembly
language subroutine before it can be loaded.

When invoking ZBASIC, if an assembly language
subroutine will be used, you must enter the
highest memory location minus the amount of
memory needed for the subroutine(s) with the
/M: switch.

For our programs, this works:

ZBASIC /M:32768

In addition to the BASIC interpreter code area,
ZBASIC uses up to 64K of memory beginning at its
Data Segment (DS).

If, when an assembly language subroutine is
called, more stack space is needed, BASIC's
stack can be saved and a new stack set up for
use by the assembly language subroutine.
BASIC's stack must be restored, however,
before returning from the subroutine.

The assembly language subroutine may be loaded
into memory two ways:

  1. By means of the operating system. Here the
object files (.OBJ) for the subroutine and
calling program are actually linked into one
executable (.EXE) file.

1



If the user has the Zenith Utility Software
Package, the routines may be assembled with the
MACRO-86 assembler and linked using the MS-LINK
Linker, but not loaded. To load the program
file, the user should observe these guidelines:

  - The subroutines must not contain any long
references.
  - Skip over the first 512 bytes of the MS-LINK
output file, then read in the rest of the file.

  2. By the BASIC POKE statement, where the
calling program loads the subroutine, in binary
form, into memory for use. The examples that
follow will use this method.

As mentioned earlier, the CALL statement is the
recommended way of interfacing 8086 machine
language programs with BASIC.

CALL Statement Format:

   CALL <variable name> [(<argument list>)]

Where:
   <variable name> contains the segment offset
that is the starting point in memory of the
subroutine being CALLed.

   <argument list> contains the variables or
constants, separated by commas, that are to be
passed to the routine.

The CALL statement conforms to the INTEL PL/M-86
calling conventions outlined in Chapter 9 of the
INTEL PL/M-86 Compiler Operator's Manual. BASIC
follows the rules described for the MEDIUM case
(summarized in the following discussion).

Invoking the CALL statement causes the following
to occur:

  1. For each parameter in the argument list,
the two-byte offset of the parameter's location
within the Data Segment (DS) is PUSHed onto the
Stack.

  2. BASIC's return address Code Segment (CS),
and offset (IP) are PUSHed onto the Stack.

  3. Control is transferred to the user's
routine via an 8086 FAR CALL to the segment
address given in the last DEF SEG statement and
the offset given in <variable name>.

Here, the ZBASIC Manual includes two diagrams to
show the state of the Stack at the time of the
CALL statement and the Stack's condition during
execution of the called routine. But I found
this most confusing.

Instead, the following contains excerpts from
The Waite Group's Microsoft Macro Assembler
Bible, by Nabajyoti Barkakati, and published by
Howard W. Sams & Company in 1989.

Retrieving and Interpreting Arguments

When the assembly language procedure is called,
you find the arguments followed by the return
address on the 8086 Stack as you go from higher
to lower addresses (See the diagram of Figure
1).

Figure 1.
BASIC Stack Frame

The first thing the assembly language procedure
should do is establish the BP register as a
pointer to the stack frame containing the return
address and the arguments.

This can be done with the following code:

   PUSH   BP
   MOV    BP,SP

BP is then used to access the arguments from the
Stack, without disturbing the stack pointer.

The contents of the stack frame at this point
are determined by the convention used by a lan-
guage to pass arguments. For BASIC, the stack
frame is shown in Figure 1, above. The conven-
tions for BASIC are below:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Argument-Passing Convention for BASIC

For BASIC, the arguments are passed by refer-
ence, using near pointers, and are pushed on the
Stack in the order of their occurrence in the
CALL. Thus, the last argument is right above the
return address.

The return address is 4 bytes because all pro-
cedures are accessed by FAR CALLs.

2

The procedure must remove the arguments using a
RET n instruction, where n is the number of
bytes occupied by the arguments on the Stack.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

After setting up BP, space can be reserved on
the stack for local variables. This is done by
subtracting from the stack pointer, SP, the
number of bytes needed for local storage
(variables needed only within the procedure).

As shown in Figure 1, the arguments passed to
the procedure are at positive offsets from BP
and the local variables are accessed using
negative offsets. Thus, [BP-2] gets you the
first word-sized local variable.

Before the procedure does any processing, care
must be taken to preserve registers to be used
in the procedure. Microsoft's high level lan-
guages require that the registers SI, DI, SS,
DS, and BP be preserved. DS, SS, and BP already
have assigned tasks, but SI and DI must be
saved. The registers can be saved by PUSHing
them on the Stack and restored by POPping them
in the reverse order before returning from the
procedure.

To access arguments and local variables from the
Stack, consult the stack frame given in Figure
1, or draw a sketch of the stack frame and
identify the location of each argument by
counting the bytes occupied by each argument.

Remember that anything PUSHed on the Stack uses
an even number of bytes, but the Stack, like all
of 8086 memory, is addressed by byte.

Finally, the ZBASIC and GW-BASIC Manuals have a
section on string arguments:

  - If the argument is a string, the parameter's
offset points to three bytes called the "String
Descriptor". Byte zero of the string descriptor
contains the length of the string (0 to 255).
Bytes one and two, respectively, are the lower
and upper eight-bits of the string starting
address in string space.

  - If the argument is a string literal in the
program, the string descriptor will point to
program text. Be careful not to alter or destroy
your program this way! To avoid unpredictable
results, add +" " to the string literal in the
program. (I could not confirm this during my
experimentation.)

   EXAMPLE:

   20 A$ = "BASIC"+""

This will force the string literal to be copied
into string space. Now the string may be
modified without affecting the program.

Strings may be altered by user routines, but the
length MUST NOT be changed. ZBASIC and GW-BASIC
cannot correctly manipulate strings if their
lengths are modified by external routines.

Returning Values

When arguments are passed, the procedure may
directly alter arguments to reflect the pro-
cessing done in it. In many other cases, the
result is returned from the procedure.

Most Microsoft high-level languages expect
values to be returned in the AX and DX regis-
ters. One byte results are returned in AL, while
word-sized results are returned in AX. Any
pointers are returned with the segment address
in DX and the offset in AX. Near pointers fit
in AX only.

Microsoft BASIC handles large-sized return
values differently. The calling program reserves
space for the return value in the Stack before
calling the procedure. The 2-byte offset (from
the Stack segment register SS) of this space is
PUSHed on the Stack just before calling the
procedure. This means that in BASIC the location
[BP+6] in the stack frame holds the near pointer
to the location where the calling program
expects the return value (see Figure 2).

Figure 2.
Stack Frame When Returning

Large-sized Values in Microsoft BASIC

In the assembly language procedure, the return
value should be copied to the location whose
address is in [BP+6] and then [BP+6] be copied
to AX and the SS register copied to DX. This is
necessary because the calling BASIC program
expects the address of the return value to be
in DX:AX.

HOWEVER, according to the ZBASIC and GW-BASIC
Manuals, ZBASIC and GW-BASIC have what appear to
be a simpler approach. ALL values are returned
to ZBASIC by including in the argument list, the
variable name(s) which will receive the result.

3



This argument is the last PUSHed, so it still
resides at [BP+6]. I have NOT checked this
difference with other BASIC languages.

Cleaning up and Exiting

A procedure is exited by using a RET instruc-
tion, but before returning, certain cleanup
operations must be performed. Registers that
were saved by PUSHing must be restored with POP
instructions. Remember that the POPs must be in
reverse order of the PUSHes.

Next, the process of setting up the BP as the
stack frame pointer must be reversed:

   MOV   SP,BP   ; Which also abandons
                 ; the local variables
   POP   BP

Finally, the syntax of the return instruction,
RET, also depends upon the language. For pro-
cedures to be called from Microsoft BASIC, you
must clean up the stack (remove the arguments
PUSHed by the calling program) by using the
return instruction of the form RET n, were n
is the total number of bytes to be removed
from the Stack.

Since Stack PUSHes occur in word-sized values,
n must be a multiple of 2. Determine the value
of n from your knowledge of the arguments that
your procedure requires.

Programming

Let us walk through the steps for writing an
assembly module for BASIC.

As mentioned earlier, there are two methods.
The first requires compiling the BASIC program
because the object (.OBJ) files are combined.
The second involves loading our new procedure's
binary (.BIN) file while running our BASIC
program.

Say we need to compute a certain 16-bit quantity
called STEP many times. We want this done as
quickly as possible, so we would like an assem-
bly language procedure FASTSTEP.

In the BASIC program we can insert the statement
CALL FASTSTEP(STEP), where the variable STEP is
the 16-bit quantity to be computed by the new
procedure.

Now, we need to write the assembly language
procedure FASTSTEP. FASTSTEP.ASM would be the
source file containing this procedure.

We assemble this file to get the object module
FASTSTEP.OBJ.

If we use the first method, we use the BASIC
compiler to also generate an object module for
the BASIC program that calls FASTSTEP. Then we
use the linker (LINK) to build an executable by
linking the two object modules.

If we use the second method, we use LINK to
generate an executable procedure (.EXE file),
then use EXE2BIN to generate a binary (.BIN)
file to be loaded and called by the BASIC
program running under the interpreter only.
This method is used by the new batch file,
ASM2BIN, presented later.

So, how do we write FASTSTEP.ASM?

As we have seen earlier, BASIC calls the pro-
cedure by PUSHing the argument's address on the
Stack and uses a FAR CALL to invoke FASTSTEP.
Because BASIC passes the argument's address
(complete segment:offset address) on the Stack,
it expects the FASTSTEP procedure to alter the
contents of the variable STEP directly. Thus, in
this case, you need not return any values in any
register.

Since BASIC uses FAR CALLs, the procedure is
declared with a PROC FAR directive.

The first task is to set up a fixed reference
point to address the argument that is on the
stack. You cannot use the stack pointer (SP) for
this purpose because SP is altered if you use
PUSH or POP instructions in the procedure.

A better way is to use the BP register. First
PUSH it on the Stack to save its old value. Then
copy the current SP into BP. This results in BP
pointing to the word just below the return
address, establishing BP as the pointer to the
base of a stack frame (the contents of the Stack
between the saved BP and the PUSHed arguments).

Once we know the layout of the stack frame,
we can access the argument, in this case at
location BP+6.

Here's what our outline for FASTSTEP may look
like:

FASTSTEP  PROC    FAR      ; BASIC uses FAR CALLS
          PUSH    BP       ; Save BP
          MOV     BP,SP    ; Set up BP as pointer
                           ; to stack frame
; --------        Start of procedure's code
          PUSH    DI       ; Save registers, if used
          PUSH    BX
          LES     BX,[BP+6] ; Since seg:offset addr
                           ; of argument is at BP+6,
                           ; this will get address
                           ; into ES:DI

; Compute new value... and save it back
; Suppose new value is in AX
          MOV     ES:[BX],AX

          POP     DI       ; Restore saved registers
          POP     BX       ; in reverse order

; --------        End of procedure's code
          MOV     SP,BP    ; So SP points to saved BP
          POP     BP       ; Now restore BP and
          RET     n        ; return
FASTSTEP  ENDP

4



At this point, let us cover a few coding rules
and recap a few thoughts.

  - For naming the new assembly language proce-
dure, BASIC uses up to 40 uppercase alphanumeric
characters.

  - BASIC invokes all external procedures with
FAR CALL instructions. Thus, the assembly
language procedure has to be declared as FAR.

  - BASIC passes all arguments to the procedure
by NEAR references. Because BASIC uses FAR
CALLs, this means that in the stack frame, the
first argument's offset address is at BP+6. If
there are two arguments, the first is PUSHed on
the Stack, then the second, so the offset of the
first becomes BP+8, and the second is BP+6. And
so on.

  - After BP is established as a pointer to the
stack frame, subtract from SP the number of
words of local storage space needed for local
variables. In the procedure, refer to these
variables using negative displacements from BP.
Thus, the first word of local storage is [BP-2],
the second one is [BP-4], and so on.

Here is how the code might look:

aProc     PROC    FAR
          PUSH    BP
          MOV     BP,SP     ; Sets up the stack frame
          SUB     SP,8      ; Sets up 8 bytes for
                            ; local variables
; Access local variables as [BP-2], [BP-4], ...
; For example, to copy 2 into the first 16-bit local
; variable, use:
          MOV     WORD PTR [BP-2],2

  - Values are returned to ZBASIC and GW-BASIC
by including, in the argument list, the variable
name(s) which will receive the result. This
differs from other BASICs, so be careful.

  - Use a RET instruction to return from the
procedure. Before returning, however, you have
to restore the stack to its state before the
procedure call. For BASIC, you must provide,
as an operand to RET, the number of bytes
occupied by the arguments to the procedure.
Thus, if your procedure requires two 16-bit
integers (4 bytes of space), the return
instruction is:

          RET     4    ; Return and remove 4 bytes
                       ; occupied by arguments

This returns from the procedure and adds 4 to
the stack pointer SP.

Note: The operand in RET n is always a multiple
of 2 because stack space is used a word at a
time.

  - In ZBASIC or GW-BASIC, if the argument is a
string, the parameter's offset points to three
bytes called the "String Descriptor". Byte zero
of the string descriptor contains the length
of the string (0 to 255). Bytes one and two,
respectively, are the lower and upper eight-bits
of the string starting address in string space.

Examples

Before we get into some programming examples,
here is a helpful utility.

The assembly language routine must be either
LINKed with the BASIC protgram, combining their
.OBJ files into one executable file, or placed
in BINARY form so it can be loaded into the
BASIC program and run within the interpreter.
This conversion to binary (.BIN) form is just an
additional step using the EXE2BIN utility.

For troubleshooting purposes, I used the binary
file and loaded it into the ZBASIC program, but
each time I made a change to the assembled
program, I had to do all the assembly steps
again. This got old fast.

For those who remember my assembly batch files,
ASM.BAT and ASMCOM.BAT, here is another
fashioned in the same manner - ASM2BIN.BAT.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
REM **** ASM2BIN.BAT - S.W. VAGTS 12/00 ****
REM Assembling an ASM calling routine for BASIC
ECHO OFF
REM First check that a file is specified.
IF NOT "%1" == "" GOTO ASSEMBLE
:USAGE
ECHO ! USAGE: ASSEMBLE filename
ECHO !
ECHO ! where filename is the program you are testing.
ECHO ! (do not include extension, .ASM assumed)
ECHO !
GOTO END
REM The above routine runs if no filename was
 specified.
REM The following routine runs the assembly process.
:ASSEMBLE
IF EXIST %1.ASM GOTO FILEFOUND
ECHO ! ASSEMBLE: File %1.ASM not found. Exiting...
GOTO END
:FILEFOUND
ECHO ! Now starting MASM...
MASM %1.ASM,%1.OBJ;
IF EXIST %1.OBJ GOTO FILEFND2
ECHO ! LINK: File %1.OBJ not found. Exiting...
GOTO END
:FILEFND2
ECHO ! Now starting LINK...
LINK %1.OBJ,%1.EXE;
IF EXIST %1.EXE GOTO FILEFND3
ECHO ! File %1.EXE not completed. Exiting...
GOTO END
:FILEFND3
DEL %1.OBJ
ECHO ! File %1.EXE completed successfully.
ECHO ! Now starting EXE2BIN...
EXE2BIN %1.EXE;
IF EXIST %1.BIN GOTO FILEFND4
ECHO ! File %1.BIN not completed. Exiting...
GOTO END
:FILEFND4
DEL %1.EXE
ECHO ! File %1.BIN completed successfully.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

By simply typing ASM2BIN MULT, it assembles,
links, and converts to binary the MULT.ASM
routine with no additional commands!

Now, let us get down to working examples. I
started first with the ZBASIC program from page
E.8 of the ZBASIC Manual, but modified it after
finally getting a working version.

5



MULT2.BAS uses an assembly routine that I called MULT2.ASM.
The ZBASIC program, MULT2.BAS, and the assembly language routine, MULT2.ASM:

10   REM *******************************************************************
20   REM ***         MULT2.BAS        --  Steven W. Vagts   12/00        ***
30   REM ***         211 Sean Way, Hendersonville, NC  28792             ***
40   REM *** Note:   Program to test MULT2.ASM for multiplying 2 numbers ***
50   REM *** Invoke: ZBASIC /M:32768 to use the first 32K memory         ***
60   REM *******************************************************************
70   DEFINT A-Z
100  DEF SEG = &H2F00
110  REM Set base of CALL to 2F00:0000 (for a 192K Z-100)
120  REM          or &H6F00 for 448k; &HBF00 for 768k RAM
1000 REM Load the BINary Assembly Language Routine
1010 OPEN "R",1,"MULT2.BIN",2             ' Open Binary File
1020 FIELD #1, 2 AS A$                    ' Set 2-byte field
1030 FOR I=&H0 TO (LOF(1)+1) STEP 2       ' For/next to read every byte
1040 GET #1,I/2+1                         ' Get next pair of bytes
1050 Q=CVI(A$)                            ' Convert to 16-bit integer
1060 M=Q MOD 256                          ' Split into 8 high and
1070 L=INT(Q/256)                         '   8 low-bits
1080 POKE I,M AND &HFF                    ' Poke data into memory
1090 POKE I+1,L AND &HFF                  '   locations
1100 NEXT I                               ' Get next pair
1110 CLOSE #1                             ' Close file
2000 INPUT "Input 2 numbers (1-99) or zero to end. ",A$,B$
2010 IF A$="0" OR B$="0" GOTO 9999        ' Test if done
2020 X=FIX(VAL(A$)):Y=FIX(VAL(B$))        ' Make integers, if not
2030 IF NOT (X>0 AND X<100) THEN 2000     ' Test if integer
2040 IF NOT (Y>0 AND Y<100) THEN 2000     ' Test if integer
2050 MULT = &H0                           ' Set address of program
2060 CALL MULT2(X,Y,Z)                    ' Call routine
2070 PRINT X,Y,Z                          ' Print result
2080 GOTO 2000
9999 END                                  ' Done

TITLE MULT2.ASM  Multiplication Subroutine for ZBASIC by S.W. Vagts 12/00
; ZBASIC callable routine to multiply two simple integer numbers.
; Modified sample program from the ZBASIC Manual, Appendix E.

CODE    SEGMENT                    ; Start CODE segment
        ASSUME      CS:CODE

MULT2   PROC  FAR                  ; BASIC uses FAR CALL instruction
        PUSH  BP                   ; Save BP pointer
        MOV   BP,SP                ; Set BP as pointer to Stack frame
; Start procedure's code:
        PUSH  AX                   ; Save any registers used
        PUSH  BX
        PUSH  SI
; Note: BASIC passes arguments to the stack as a 2-byte offset of the
; parameter's location within the data segment (DS). For example, if
; last argument is P3, then P1 is PUSHed first, then P2, then P3, so: 
; P1 ends up at BP+10, P2 at BP+8, and P3 at BP+6.
        MOV   SI,[BP+10]           ; SI=pointer to parameter1
        MOV   BX,WORD PTR[SI]      ; AX =integer value
        MOV   SI,[BP+8]            ; SI=pointer to parameter2
        MOV   AX,WORD PTR[SI]      ; AX =integer value
        MOV   SI,[BP+6]            ; SI=pointer to parameter3
        MUL   BX                   ; AX = AX * BX
        MOV   WORD PTR[SI],AX      ; Save AX in parameter3 (BP+6)
        POP   SI                   ; Recall original registers
        POP   BX
        POP   AX
; End of procedure's code
        MOV   SP,BP                ; So that SP points to saved BP
        POP   BP                   ; Recall BP pointer
        RET   6                    ; Return and remove 2 bytes/argument
MULT2   ENDP                       ; from stack by the CALL procedure.

CODE    ENDS
        END   MULT2

6



Save this last program as MULT2.ASM, then
convert to a BINary file with:

ASM2BIN MULT2{CR}

Where {CR} is simply pressing {RETURN}.

To try out the program pair, type:

ZBASIC MULT2 /M:32768{CR}

ZBASIC loads and runs MULT2.BAS. When the
program gets to line 1010, it loads the
MULT2.BIN file into memory.

At line 2060, it CALLs the new subroutine.

I modified the original program, MULT.BAS, to
query for two numbers, test that they were
valid, and then perform the multiplication:

The next pair of programs prints a string:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

10 REM ***
20 REM *** PSTRNG.BAS -- Steven W. Vagts 12/00 ***
30 REM *** 211 Sean Way, Hendersonville, NC 28792 ***
40 REM *** Note: This program tests PCHR.ASM to print a string. ***
50 REM *** Invoke: ZBASIC /M:32768 to use the first 32K memory ***
60 REM ***
70 DEFINT A-Z
100 DEF SEG = &H2F00
110 REM Set base of CALL to 2F00:0000 (for a 192K Z-100)
120 REM or &H6F00 for 448k; &HBF00 for 768k Z-100
200 REM Define some ESCape codes:
210 E$=CHR$(27): RED$=E$+"m72": GRN$=E$+"m04": BLU$=E$+"m71": BLK$=E$+"m70"
220 Y$=ESC$+"Y": HOME$=Y$+CHR$(32)+CHR$(32) ' Set screen "home"
230 GC$=E$+"F": NC$=E$+"G" ' Set Graphics/Normal characters
240 CRLF$=CHR$(10)+CHR$(13) ' Set Carriage Return and Line Feed
250 CLR$=E$+"E": E25$=E$+"x1": D25$=E$+"y1" ' Clr Scrn/enable/disable 25th line.
260 DEF FNPOSIT$(L1,L2)=CHR$(27)+"Y"+CHR$(31+L1)+CHR$(31+L2)
1000 REM Load Assembly Language Routines
1010 OPEN "R",1,"PCHR.BIN",2 ' Open Binary File
1020 FIELD #1, 2 AS A$ ' Set 2-byte field
1030 FOR I=&H0 TO (LOF(1)+1) STEP 2 ' For/next to read every byte
1040 GET #1,I/2+1 ' Get next pair of bytes
1050 Q=CVI(A$) ' Convert to 16-bit integer
1060 M=Q MOD 256 ' Split into 8 high and
1070 L=INT(Q/256) ' 8 low-bits
1080 POKE I,M AND &HFF ' Poke data into memory
1090 POKE I+1,L AND &HFF ' locations
1100 NEXT I ' Get next pair
1110 CLOSE #1 ' Close file
2000 REM Construct screen message:
2010 M1$=FNPOSIT$(12,12)+"*** "+RED$+"MERRY CHRISTMAS"+BLK$+" ***"
2020 M2$=CHR$(10)+"*** and "+GRN$+"HAPPY NEW YEAR"+BLK$+" ***"
2030 M3$=CHR$(10)+BLU$+"2001"+BLK$
2040 A$=M1$+M2$+M3$
3000 PCHR=0
3010 CALL PCHR(A$) ' Display string.
3020 A$=INKEY$: IF A$="" GOTO 3020
9999 END

TITLE PCHR.ASM Print Char Subroutine for ZBASIC by S.W. Vagts 12/16/00
; ZBASIC callable routine to print a character string to the screen.

CODE SEGMENT ; Start CODE segment
 ASSUME CS:CODE

PCHR PROC FAR ; BASIC uses FAR CALL instruction
 PUSH BP ; Save BP pointer
 MOV BP,SP ; Set BP as pointer to Stack frame
; Start procedure's code:
 PUSH AX ; Save any registers used
 PUSH CX
 PUSH DX
 PUSH SI
 PUSH DI
; Note: BASIC passes arguments to the stack as a 2-byte offset of the
; parameter's location within the data segment (DS). For example, if
; last argument is P3, then P1 is PUSHed first, then P2, then P3, so:

7

; P1 is at BP+10, P2 is at BP+8, and P3 is at BP+6.
; For our single argument, A$ is saved at the offset BP+6.
; But, according to Appx E of the ZBASIC Manual, if the argument is a string,
; the parameter's offset points to 3 bytes, called the "String Descriptor".
; Byte 0 of the string descriptor contains the length of the string (0-255).
; Bytes 1 & 2 are the lower & upper 8-bits of the string starting address.
 MOV SI,[BP+6] ; BP+6 has address to String Descriptor
 MOV CL,BYTE PTR[SI] ; CL = number of bytes in string
 MOV DI,[SI+1] ; Set address of String Descriptor in DI
PC1: MOV DL,BYTE PTR[DI] ; Get byte from string
 MOV AH,06h ; Display char on screen (can also be 02h)
 INT 21h ; Call DOS
 INC DI ; Move to next address
 DEC CL ; Decrement count
 JNZ PC1 ; Not done, do again
 POP DI ; Recall original registers
 POP SI
 POP DX
 POP CX
 POP AX
; End of procedure's code
 MOV SP,BP ; So that SP points to saved BP
 POP BP ; Recall BP pointer
 RET 2 ; Return and remove 2 bytes from stack
PCHR ENDP ; by the CALL argument.
CODE ENDS
 END PCHR

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A few last thoughts:

  - Due to space constraints, I deleted the
blank lines between ZBASIC line blocks. I like
to add the blank lines because I think they
improve readability, and ZBASIC doesn't care.

  - The DEF FN statement of line 260 might catch
you by surprise. It took me quite a while to get
it to work. Here it is again:

260 DEF FNPOSIT$(L1,L2)=CHR$(27)+"Y"
    +CHR$(31+L1)+CHR$(31+L2)

We need it to position our text anywhere on the
screen, in a manner similar to the LOCATE x,y
command. I tried to shorten the CHR$(27)+ "Y" to
Y$ earlier, but for some reason, it would not
work. The function is then used in line 2010 to
place our message.

There is a problem, however. Without this
function at the start of our string, for some
reason, PCHR ALWAYS places the string on line
25! I have not been able to figure out what
causes this. If you have some ideas, please give
me a call.

I have learned a lot from this little project
and hope you will give the routines presented
here a try. Enjoy...

Note: This project was completed 22 years ago.
I may have inadvertently created an error during
this update. Please let me know if you find or
have a problem. Thanks. 

If you have any questions or comments, please
email me at:

z100lifeline@swvagts.com

Cheers,

Steven W. Vagts

8

mailto:z100lifeline@swvagts.com

