--.—l.-!.-—r.—r.-.r-—'H|-|l--l-|.i-l'—-H-.—-H--—I.—lﬂu—f-ﬂ-’-”ﬂﬂr-ﬂiﬂd_

7-100 LifeLine Web Site:
HOWGOZ IT [] L []] - L]] L] L L] []] []

Additional Comments on CP/M

Z-100 LifeLine

Since 3

December 2012

H-H---‘----.l'_'#-'ﬂ'-ﬁuﬂ-ﬁ-_--ﬂ---*”-'”-"HH-#

https://z100lifeline.swvagts.com (new effective September 2019)

additional Comments on the 22DISK Utility « ¢ ¢ o o o o o o o = 2

Disassembling CP/M-85's ASSIGN.COM « <« « o ¢ = =« ¢ = = =

CP/M Assembly Language Programming Essentials . . « ¢ ¢« o ¢ o o o

l.ﬂl-1-1_"-—Hﬁ'—'ﬁ'I—'l—'-ﬁ'—ﬁﬁ"-#-—-ﬂ_ﬁﬂ--""#l—"-““

HOWGOZIT

Merry Christmas!! Can you believe it? As a
child I often wished Christmas would come
sooner. Now, as an adult, it seems to come
every month!

well, while the mid-west 1s again getting
clobbered by snow, we here in North Carolina
are seeing record temperatures. I have my
plywood snowman out in the front yard with
his "Let It Snow!" sign hoping for snow, but
it looks like another futile jesture. My snow
dance hasn't worked yet either.

I've been working hard on my two versions of
CP/M trying to learn a rather simple assembly
language for the 8085 CPU (compared to the
DOS on 8088), but I'm not too proud to admit
that the going has been slow. I've been
getting some moral support from two of my
friends and it has helped a lot just being
able to vent my frustration on them. Thank
you both, Thierry Klein and charles Hett.

In this issue, we are going to continue the
discussion on CP/M with a disassembly project
that may interest a few of you.

As this is a learning experience, I'm going
to go into great detail. Just keep in mind
that I'm am not a very good programmer and
this is almost as new to me as it may be to
some of you. The key here is not to rush this
along. We must take our time and be meticu-
lous, otherwise we will end up chasing errors
that should have been very obvious. However,
I have been having a great, though sometimes
frustrating, time and success has been a
terrific reward to the challenge. I hope you
will also enjoy it.

.—r.—r.i-r.p---.n-r-u--.-l.n-r._u---d-l.n-l'H_“ﬁﬁ!.—r-—lﬁ'_ﬁﬂ_ﬁﬁﬂ_-ﬂﬁﬂ-#

-.ﬂﬂ--ﬂﬁ-ﬂ.ﬁH-.-—HHH”-HH”-HH":—'HH_#-l-l'ﬂl'.—'--—l-F-l_'

Additional Comments on CP/M

I've been somewhat disappointed with CP/M-
plus. If some of you feel differently, please
feel free to straighten me out.

As I recall, cP/M-85 worked well for me, did
the basic computing that I needed it to do
very well, but lacked a few things that in
z-DOS were taken for granted.

one huge irritant was the ED utility, unim-
proved under Plus. How could that program
have ever been called an editor? I'm glad
that T found Magic Wwand early in my CP/M
days. Otherwise, my computing days would
probably have ended quite early, with the
computer left out in the cold.

Plus' ASSIGN program lacks the ability to
assess the hard drive partition information
that the earlier version had. Sorely missed,
it is the reason for disassembling both to
see if I can add the missing capability.

Plus does not include all the utilities that
CP/M-85 had. Utilities, such as STAT, had to
be taken from CP/M-85 and for some reason has
problems calculating space remaining under
Plus - another program I'll have to look at.
But if you didn't have the earlier version,
you were out of luck.

The biggest improvement, however, would be
the addition of having date/time stamps on
files - a necessity when trying to Kkeep
different draft versions straightened out.
And this recent project brought it to a head.

Thankfully, I'm doing my code writing on a
PC because I had three programs I was working

.-l-l'._ﬁ'.ﬂ.—'-'_-ﬂlﬁ'ﬁ'---ﬂ.ﬁ'ﬁ--#H-"-#—-#-—FH-#—#HHH”-.—F

Z-100 LifeLine

ﬂﬁ—ﬂn.ﬂ#-—'—rﬁ#-ﬂr#—ﬁ-—-—”——H-J-H-.H-d-'"—'-r"d-'ﬂ-rd-*

on at the same time - for EACH of the two
versions of CP/M I was running - as I tried
to reduce my main program, ASSIGN, into
smaller elements that I could troubleshoot
without wading through the main program. Date
stamping was critical!

I'm finding CP/M-Plus to be entirely differ-
ent from CP/M-85. Completely rewritten, not
a single routine resembles its predecessor.
Though more capable, accepting up to four
disk drives of the three main types - 5", 8",
the Hard Drive partitions, and a Memory Disk
- its entire structure has been changed. And
Disk I/O is a completely different animal, so
I'm not learning one language, but two. And
the lack of source code and explanations in
both version's manuals make it much more
difficult to follow, more of a guessing game
for further experimentation.

I'm still working on Plus' ASSIGN program and
will let you know how I make out. If I'm
successful, I may be able to offer a much
improved version to play with.

I also looked closely at CP/M-86. However, it
is nothing but a 16-bit version of CP/M-85
and suffers the same problems - lack of
date/time stamps, still limited to 2 drives
of each type, etc. So, it appears that CP/M-
plus is the way to go. I did find a RDDOS
file, however, that I'll try under CP/M-Plus.

Additional Comments on 22DISK

CP/M <-> DOS Disk Interchange Utility

As mentioned last time, 22DISK is a greatly
needed utility that provides the capability
of reading and writing CP/M diskettes on a PC
clone. It had installation difficulties onmy
pc, though I'm still not sure if the problems
were not generated by me. In any case, the
installation instructions could be vastly
improved.

However, this utility, once installed, has
become a necessity to my programming work,
nearly as important as the multi-window
display on the PC. Running WORDPAD on the PC,
I can quickly generate new programs, COpPY
sections of code at will between windows, or
search and update code in a file. Then I copy
the file to a cP/M 5" floppy, take it to the
z-100, and try assembling and running £ o

New program not working? It is easy to run s b o
under SID, the cP/M-Plus debugging utility
(one of the few things that I like from Plus
and it runs equally well under CP/M-85) and
trace through the affected code. The finished
.COM program can be copied back to the PC for
storage with the rest of my CP/M library.

-.r.v-.---r—-.-l-r.il-l-.-.-.-u--HH.—'“#-r-.ﬁﬁnﬂﬂ”-ﬁ—-ﬂﬂ-ﬂﬂ--d—ﬂ—l

December 2012

#-—H_.—F-_'H-ﬁr-—-ﬁ-ﬂ—ﬂ”--ﬂd--ﬂﬁ-

Wwhile there are CP/M simulators out there
that will run on the PC, I'm not sure if they
can be tailored to the z-100 environment for
the system work that I've been doing. They
may be worth a try, however, if you have some
generic programs that you already have or
want to try under any generic CP/M program.

Closing

My New Year's resolution 1is to remodel our
kitchen and family room over the next several
months. So time spent on Z-100 projects will
be very limited. However, I hope that this
issue's disassembly project will help spark
your interest in CP/M programming.

If you are so inclined, I hope you will give
the attached procedures a try. In the next
issue I hope to continue digging a bit deeper
into CP/M. I'll let you know how I make out.

I1f you need software, I can e-mail it to you
or send a CP/M disk to get you started. Also,
please feel free to contact me with questions
or suggestions on other changes for CP/M.

Cheers!!!
'Til next time, 1, .10,
happy computing! m“fzo Z—ﬁﬁ
Ry

Z-100 LIFELINE

Supporting the H/Z-100 Community
Since 1989

Steven W. Vagts
211 Sean Way
Hendersonville, NC 28792

(828) 685-8924
Email: z100lifeline@swvagts.com

Don't forget our Z-100 LifeLine Web Site:
https://z100lifeline.swvagts.com

z-100 Parts & Service
DOS v3 Software & Documentation
MTR-ROM v4 & Z-DOS v4 Software
z-207 w/High Density Drive mods
7-205 Mods and RAMDisk Software
Past "Z-100 LifeLines" on CD-ROM
Z-100LL Software Library on CD-ROM

-#H.--_'H-H-_H--HH-'--I-H-_-‘-H_---"--l—'-"--_’—"

F".--H”—HH-HH'_

Ao 7Z-100 LifeLine

Since 19883

-hl---hlH-Hﬂr—*-ﬁlﬂ—ﬂﬁﬂ-ﬁﬂf--—*“_#””ﬂ

Disassembling CP/M-85's ASSIGN

In this issue I wanted to outline my proce-
dures for disassembling CP/M-85's ASSIGN.COM
utility. The procedures may be boring to most
of you, and I apologize for that; however, 1L
you were ever tempted to dig into assembly
code, this is the time to do it.

We will be using assembly code for the
7z-100's 8085 CP/M computer processing unit,
which is considerably easier than the assem-
bly code for its close cousin, the 8088 DOS
computer processing unit with its large
number of double registers.

So, if you are so inclined, please joln me as
we look into the workings of one of CP/M-85"'s
most important utilities - ASSIGN.

I've collected much of the material that we
will need from numerous other CP/M source
files and included them in this issue for
easy reference. However, for a more thorough
understanding of these important concepts, I
encourage you to actually read the manuals,
if you have them available.

Please don't get intimidated by the quantity
of material. I included it all, even though
we'll only need a small portion of each and
I'll try to explain the workings of each
section as we go.

For space considerations, I'm not including
the entire generated file, as it 1is very
repetitive. I will only include the primary
areas of interest to us. If you follow the
procedures given, you can easily generate the
entire file on your own.

so, let's get started.

I like the older CcP/M-85 (CP/M v2) version of
ASSIGN much better than the new CP/M-Plus
(CP/M v3) version, but also wanted to add
some enhancements. For example, in CP/M-85's
version, ASSIGN ? was meant to list all the
directories on the hard drive and there was
no help file. So, as long as we are making
changes anyway, I changed ASSIGN ? to provide
a help screen and added a new function,
ASSIGN * to list all the directories. The
changes were simple, and were one of the
reasons for going through all these arduous
procedures in the first place.

Notes:

- As CP/M-Plus (hereafter called CPM3)
will be my primary CP/M version of interest,
I copied CcP/M-85's (hereafter called CPM2)

December 2012 Issue #123

H-ﬁ-__H-_ll-‘".--‘ﬂ'ﬁ-”-_-_ﬁnhyﬂnﬂn--ﬂ----ﬁﬁﬂ

version of ASSIGN to CPM3 as ASSIGNZ2.COM. It
will NOT work under CPM3; however, the fol-
lowing procedures will be using the CPM3
version of SID, which has capabilities that
seemed more logical to me, and beyond those
of DDT. I will also be using CPM3's PUT
utility to our advantage later.

- - when it finally comes to reassembling
the newly modified program, copy it to the
CPM2 partition and Boot to CPM2. CPM2 uses
the ASM utility to create a .HEX file, then
the LOAD utility to create the .COM file from
the .HEX file.

- I am not an expert at any of this dis-
assembly/assembly stuff. I'm muddling along
on my own, experimenting, and reporting how
I did it. Please, if you have any sugges-
tions or improvements that would make this
arduous process easier, send them to me and
I'll be happy to report them in the next
LifeLine.

-- If you are interested in any of the
work being discussed here, but are lacking
any of the programs, I have copies of all
that I would be happy to send to you for a
nominal fee of §$5.00 per disk to cover
shipping and my time. However, do not be
tempted to search the web and buy this
software on-line. You must use CP/M versions
designed for the H/Z-100!

OK, enough preliminaries. Let's get to work.
The following procedures were used to dis-
assemble CP/M-85's version of ASSIGN:

13 Boot to CPM3 and invoke SID ASSIGN2.COM
and use the 'D'ump command to look at the
entire program to find all the data strings
that might be useful. Identify the start and
stop addresses of each of these areas.

2) Using the {CTRL}-{P} command, create a
printout of the entire program, from address
0000 to the end of memory used. Use the 'L
ist command to print out the coded state-
ments, and when you reach an area containing
strings, use the 'D'ump command.

3) on the printout, look for all RET's and
JMP's and draw a long line across the page
following their statement. These identify the
ends of routines and the starts of new
routines.

4) Now look at the first part of the pro-
gram. The program actually begins at address
0100. But there is an area of memory below
that is called 'Page Zero'.

PAGE ZERO
Addresses below 0100 (the beginning address
of all CP/M programs) are in an area called
Page Zero of memory. This area functions as
an_ interface to the BDOS module from the
console Command Processor. See the section
called "Page Zero of Low Memory..." in this
issue for more information.

Note: Page Zero in CPM2 and CPM3 are
different. For a copy of CPM2's Page Zero,
invoke SID under CPM2 and use the ‘'D'ump
command, e.g., #D0000.

However, please note that many opcodes 1n
our program may reference these numbers as
addresses or constants. Until you actually
analyze the context, it 1is difficult to
decide which they are. As they are eliminated
as addresses (they were constants), they may
be deleted as no use to us here. I left four
as examples:

+ ADDR? : Reference: Used at Addresses:
+ 0000 LXI Reg 06D7, O06FB

+ 0004 LXI Reg 033E, 0368

+0010 LXI Reg 0332, 0360, 0398
;0048 LXI Reg 0203

-------- GENERAL EQUATES —--====--

They don't show up in our disassembled
program yet (we have to add them ourselves
later), but there are often EQUates listed at
the beginning of the source code to identify
some of these Page Zero areas:

BOOT equ 0000h ;system reboot

BDOS equ 0005h ;BDOS entry point

BIOSf equ 004Eh ;BIOS entry point

FCB1 equ 005Ch ;First filename

SFCB equ FCBl s Source FCB

FCB2 equ 006ch ;second filename

pBuff equ 0080h ;Default Disk Input Bufr
TPA equ 0100h ;Begin of Trans Prog Area

Make a note to add these later. Just for
grins, using SID under CPM2, I 'D'umped the
first line of code at address 0000 and found:
0000: C3 03 FB 00 00 Cc3 00 DA
OF 00 10 00 20 00 FB 40

Unassembled, the two highlighted sets of
numbers above become:

0000 JMP FB03 ;CP/M-85 BDOS system Reboot
0005 JMP DAOO :BDOS Calls Entry Point

Later, you will find that 0000 is JMPed from
addresses 026B,037A,0392,043E,046E,047E,etc.

and BDOS, 0005, is CALLed from addresses
0382,03F3,042A,0462,04A8,04AE, etc.

BDOS FUNCTION CALLS

BDOS in the EQUate above is the BDOS function
call. These are listed separately in this
ijssue in the section called "BDOS Function
calls..." for your reference.

5) Look for the CALL's to 0005 and note
these on the printout. Generally, register C
has the BDOS function number, and register
pair DE has the Entry Value to be used in the
CALL function. If not familiar with a partic-
ular function, it may help to create an info
box with a description to remind you of its
function, register use, etc.

BIOS ENTRY POINTS

BIOSf in the EQUate above is the BIOS func-
tion Base Address entry point. These are

listed separately in this issue 1in the
section called "BIOS Entry Points..." for
your reference.

6) In our code, these are not as obvious

as the CALL's to 0005. Instead, we need to
look for a routine that has the opcode PCHL.
vou should find it at O5AE in our ASSIGN

program. If this is correct, mark all CALL's
to 05AE as BIOS calls.

Note: The sequence of opcodes become obvious
after a bit:

LHLD O0O04E +BIOS Base Addr

LXI D, (BIOSf# in hex; 001B,001lE,etc.)
DAD D : HL=BIOS jmp vector
CALL O5AE s PCHL & Return

Note: The opcode PCHL is an indirect call to
the address in HL (contains the BIOS Jjump
vector address). HL has the BIOS Base Address
and DE has the offset for the JMP Vector.

Again, if not familiar with a particular
function, it may help to create an info box
with a description to remind you of its
function, register use, etc.

— ¥ X X X N/ -

DEFAULT DMA BUFFER

one of the EQUates, DBuff EQU 0080h, takes
additional explanation. The DMA address is
used as the default drive buffer and for

storing any Command Line parameters, which
may be used and processed by the program.

For example, from within the CPM2 partition,
if you wanted to assign a drive letter to the
CPM3 partition using ASSIGN, you would enter
the command:

ASSIGN B:=CPM3
or ASSIGN B:=CPM3;CPM3

The B:CPM3;CPM3 is a command line parameter

string. However, when we use the SID debugger
to work with ASSIGN.COM, we have to enter the

command :
SID ASSIGN.COM

and can't enter these parameters 1in the
normal manner. We must use SID's 'I'nput Line
command at SID's pound ‘'#' sign command
prompt:

#IB:=CPM3;CPM3

Now, if you were to dump the buffer beginning
with 0080, using the command: #D0080, you
would see:

0080 OCc 42 3A 3D 43 50 4D 33 3B

where the first byte, 0C, is the total number
of characters in the command line parameter
string.

For other ASSIGN parameters, such as:

#1? for partition info, would give us:
0080 01 3F 00

#I{space} for assignments, would give us:
0080 01 20 00

In each case, the first byte is the total
number of characters used in the buffer.

Further note of interest about the DMA buffer
at 0080: For some unknown reason CPM2 and
CPM3 take the last 128 bytes of the program,
up to the next page boundary (xx00 or xx80),
and places them at 0080 before starting the
program. Why? I don't know. May be a crude
attempt at clearing this buffer area. should
I leave my own 128 byte buffer of zeros at
the end of the program to ensure we start
with a clear buffer? More on this later.

SWAPPING CPU PROCESSORS

while early cP/M used only an 8-bit CPU
processor, such as the Intel 8085, with the
development of the H/Z-100, later versions
of cp/M, such as CP/M-85 (CP/M v2), sought to
make maximum use of the 2-100's 16-bit Intel
8088. To this end, most of the BIOS functions
mentioned above were executed by swapping the
z-100's CPU processors to accomplish as much
of the desired task as possible.

So once the function number was given, CP/M
used the 2-100's OFEh swap port to change the
processor doing the work. The 16-bit portion
of the BIOS contained a separate list of
functions for the 8088 that were then called
to perform the function.

BIOS DISK DATA STUCTURE

Finally, please read the section titled "BIOS
Disk Data Structure”. The BIOS Disk Data
structures describe the particular character-
istics of the disk subsystems used in CP/M.

ASSIGN deals specifically with assigning
drive letters to the Winchester hard drive
partitions, so these tables will come 1in
handy for that.

——-——.--———-——-—-—-—----———-—ﬂ-—----—-——-----—--

some other equates might be handy to place at
the start of the code, such as these non-
graphic characters:

BEL equ 07h ;Bell
CR equ ODh ;Carriage Return
LF equ OAh ;Line Feed

Following all these EQUates, we have the

starting point of the code:

ORG TPA ; Begin TPA at 0100
Start:
LXI sSP,0200h :Create Local Stack
JMP Begin ;Jump over data and
; any stack area
DS OFAh ;s Reserve 250 bytes for

; any data & stack
Adjust OFAh to make Begin start at 0200.

Generally, here you may find some data area
that may contain one or more buffers, data
strings, and perhaps the local stack. The JMP
statement above jumps this area to go to the
actual start of the code.

Use SID's 'D'ump command to print this area,
and 'L'ist to print the actual source code
statements. ASSIGN had no such text here; it
lists these statements at the end.

It did, however, have data or code kept in
this location, though I have not been able to
determine where it came from. When I replaced
this area with all zeros, however, there was
NO influence on the running of the program.
More on this later.

I usually add some sensible labels and place
their initial memory locations towards the
end of the line to search for these later and
update the labels in the code. If desired,
the buffer area can be further broken down
to individual memory locations as we figure
each of them out. But for now, we'll leave
them lumped together as defined space, Ds.

7) studying the printout, look for each
CALL and note each new routine. Note at the
start of each, the Address Location 1t was
called from, so later we can go back and
relabel each CALL, if we so desired.

8) Look at each Jump instruction, and note
at each destination, the Address Location it
was jumping from, such as:

JMP from 0310, or JIJNC from O2FF
What we are doing is identifying each new

chunk of code, breaking it down into manag-
able portions and giving it some structure.

9) Regarding the data areas before, and
probably others in the program and after the
last coded statement, these are often acces-
sed by the program to store and retrieve
data. While the original source code had
labels for all these locations, at this point
it is nearly impossible to relabel each of
these to something meaningful. It is best to
leave these memory locations as just memory
addresses and as you figure out a function
for any particular location, note it in the
code or printout.

10) Using your favorite word-processing
utility, create a file called DRAFT.ASM and
type in whatever useful text from the above
explanation of the disassembly process that
you wish. Begin all lines with a semicolon so
as not to generate errors during reassembly.
Include the information on BDOS functions
and BIOS entry points. The idea here is that
we create a basic set of instructions that
can be used in future disassembly projects
and insert it at the start of every project.
If you received disks from me, this DRAFT
document has already been generated. Tailor
it to your own tastes, however.

11) Boot to the CPM3 partition and copy
CPM2's ASSIGN.COM to it as ASSIGN2.COM. Also
copy DRAFT.ASM to it. Now, it's time to
create our new source code. I found an
interesting use for CP/M-Plus' PUT utility
that can save us a considerable amount of

typing.

The PUT utility is able to redirect printer
output to a filename. So we can use PUT to
send our listing from SID to a file, TEST.
ASM, by using the following command sequence:

PUT PRINTER FILE B:TEST.ASM
In English, this is translated as:
PUT PRINTER OUTPUT TO FILE B:TEST.ASM

Now press {CTRL}-{P} to send everything to
the printer. Then invoke SID using the
command :

SID B:ASSIGN2.COM

The SID 'L'ist command will now list our
unassembled code to the printer and the file,
B:TEST.ASM at the same time. If you do not
want a printout, turn the printer off.

At the SID # sign prompt, use the 'L'ist
{(First Addr}, {Last Addr} command where First
Addr is 0100, and the Last Addr is the 'NEXT'
or 'MSZE' given by SID when it loaded our
ASSIGN2.COM program.

The command becomes:

$1.0100, 0880

12) when SID has completed listing the
program, exit with a {CTRL}-{C} to the A>
system prompt. Now we can use the PIP HEILILY
to create an .AsM file, first loading our
DRAFT.ASM file, then loading our B:TEST.ASM
file, using the command:

PIP B:ASGN85.ASM=B:DRAFT.ASM,6B:TEST.ASM

You can then edit your B:ASGN85.ASM using
your favorite editor. I like Magic Wand on
the 2Z-100. However, I found a PC works
better. More on this later.

T chose the name ASGN85 because this will not
be the actual source code for ASSIGN. CP/M
v2 and v3 already had their own ASSIGN
commands and I wanted to make some changes
to each program, so I didn't want them to be
confused with the official ASSIGN command of
either version.

13) You will find that B:ASGN85.ASM con-
sists of all the text from DRAFT.ASM followed
by the opening title of SID:

CP/M 3 SID - Version 3.0
NEXT MSZE PC END

0880 0880 0100 DI1FF
#1.0100, 0880

14) Place semicolons in front of these SID
lines for now. They will remind you of these
procedures to generate this .AsM file.

However, if you get tired of looking at them,
this can all be deleted. Likewise, the data
between 0100 and 0200 (our stack area) can be
left for now, until we see if any of it 1is
used, at least. If and when we ever decide
to try reassembling this file, nearly all
the preceeding text can be deleted, if
desired. If left in, make sure the informa-
tional text is at least commented out with
semicolons.

Now we come to the real coded statements:

0100 LXI sP,0200h ;(0100)
0103 JMP Begin +(0103) Jump to 0200
0106 INR C ;(0106)
0107 XRA D ;(0107)
0108 INR C :(0108)
0109 ORA E +(0109)

etc... to 0200

For now, leave these statements as they are
until we find out if they are actually used
or if they are just part of a data area.
After defining everything else in the code,
we will look back on this area from 0106 to
01FF and see if it was used for anything or
needs to be deleted.

My testing has shown the above data lines
between 0106 and 0200 have never been called
nor jumped to and all CALL and JMP instruc-
tions go to no legitimate locations. Yet, the
orignal ASSIGN had code placed here by CP/M

(from where and why?) and my program insists
on leaving zeros here because of the 'JMP
Begin®' instruction.

I suspect that ASSIGN had a DS statement
added as I've done above that caused Begin
to actually start at 0200 exactly. The DS
statement only saves the space, it sets no
particular data in this space like a DB or
DW statement does, so anything may be found
here.

Additional testing has shown that replacing
this strange data here with zeros has no
affect on ASSIGN's operation. So I've subse-
quently eliminated this area from ASGN85.ASM.

Note: oOur ASGN85 program, when completed,
can be assembled under CPM2 or CPM3. CPM3 can
use MAC (similar to CPM2's ASM utility) to
generate a .HEX file which is then converted
to a .CoM file by the LOAD utility, or RMAC
(which generates a .REL file which 1is then
LLINKed to become a .COM file).

However, if you use RMAC, comment out the ORG
opcode. RMAC assumes the new .COM file 1is
going to begin at 0100 and if the ORG state-
ment is left in, RMAC will place a new JMP
0203 instruction at address 0100 and a gap of
256 zero bytes will be added to the program!
Removal of the ORG 0100 statement fixes this.

We cannot leave the sSstack at 0200 either. We
could either change it to 0100 and let it use
the Page Zero buffer area or move it else-
where. As I was already making changes to
hopefully improve the program, I moved the
stack to follow the data area at the end of
the program, therefore changing the above
opening lines to simply (I left the old
statments at the start of the program listing
so you can readily see the difference):

ORG TPA ; Begin TPA at 0100
Start:

LXI SP,Stack :See text re Stack
15) In this disassembled code, transfer all

our notes from the previous SID ASSIGN2.COM
printout, documenting the Jumps and Call
addresses, BDOS functions, and the like.

CAUTION: Often the code can get scrambled
when going from a text area, buffer area, or
from an area reserved for the stack, back
into code. The disassembler gets confused.
Not knowing where the code begins, it takes
its best guess. For example, the following
code was disassembled as:

OlFF CPI 2Ah
0201 MoV C,M
0202 NOP

0203 LXI B,0048h
0206 DAD B

one good give away is the NOP opcode. If the
disassembler can't find a legal opcode, it

inserts a NOP or DB to realign itself with
meaningful opcodes. If you know the end of
one of these data areas, begin disassembly
where you know code begins again. For exam-
ple, the actual disassembled code, if we
begin at 0200 (top of stack and start of new
code) 1is:

0200 LHLD BIOSf
0203 LXI B,0048h
0206 DAD B

: (004E)

16) Now is a good time to use SID to trace
through and print out a good portion of the
ASSIGN.COM program. As we want to see the
ASSIGN ? routine, boot to CPM2 (remember this
version of ASSIGN will NOT work under CPM3)
and press {CTRL}-{P} at the CP/M prompt to
enable printing, and use the command:

A>SID ASSIGN.COM

The computer will display something similar
to:

CP/M 3 SID - Version 3.0
NEXT MSZE PC END

0880 0880 0100 CDFF

#

At the pound prompt, enter 'I?':
#1?

As we mentioned before, the 'I'nput Line
command simulates the command line that the
CCP normally prepares upon program load. SID
does not recognize any characters following
the program name, so the 'I'nput command
permits us to finish the command by adding
any additional required characters.

17) It is time to remove all the addresses
listed before the opcodes. These addresses
will confuse any attempt at reassembly. I
like to list them as remarks for easy refer-
ence. Convert those addresses that we know to
be used into labels:

For example, for all the addresses that were
targets for Jumps, I created a label begin-
ning with Jxxxx, where xxxx is the original
address listed. Likewise, all addresses that
were targets for cCalls, now became CXXXX.
And, finally, all those addresses that were
referenced somehow, but not actually used,
became Rxxxx. Later, we can replace these
labels with more descriptive labels, if you
so desire.

18) Now is also a good time to transfer what
we have to an IBM-PC clone. No offense meant
to the Z-100 or CP/M, but working on the much
more capable and faster PC, using a newer
editor, even WORDPAD, and having multiple
screen windows is so much easier.

one means to accomplish this is to download
22DISK from off the internet. This utility

T work on the files using WORDPAD, make

works under DOs and permits the transfer of
copies for archive purposes, and even started

data to and from CcP/M floppy disks 1in a

format usable on the Z-100. a CP/M Library, but I can address this
further in a separate article.

Briefly, I take the CP/M 5/25" floppy disk to

my PC, run 22DISK and copy the files to E:\ After making any changes, I copy the files

back to the cP/M floppy for transfer back to
the Zz-100 for assembly under CP/M and run the
programs.

cPMwork\ (filename). E: is a partition on the
hard drive or can be a separate hard drive.

d——#—_-—__-—_—*—_-.———--———--_--——-—'-————-.—l-—--_——-—--_—---'__—-—-rrl--__———__-_—“—_——_—#—_--——
-——_-—_—u--_“_—-——-—-'.-'--_.._-__"-pl..__-__._--'—I-l—-_#-__-_—_—--I-H-_-—-—l-l—-—---‘—ﬁ--—-#_-_-_-_—_-_F_—-

ORG TPA ; Begin TPA at 0100
Sstart:
LXI SP,Stack :See text regarding stack
- LXI spP,0200h s+ (0100) stack here
: JMP Begilin ;s (0103),0200
- DS OFAh :Reserve 250 bytes to
- + make Begin=0200
: Begin: :(0200) We jump here from Start,
r

over any data area & sStack

I've added some new code to check the correct version using the BDOS version function and
provided some help in the form of an opening screen.

MVI C,VerNbr :Let's check the BIOS version 1s OK
CALL BDOS :Returns ver# in A and HL

CPI 20h :Version 2.0 or better?

JC Errvers : (049F) Version bad

CPI 30h sVersion < 3.X?

JNC ErrVers : (049F) Version bad

LXI D,HdgMsg +Print an opening message

CALL Pstring

=
-y
®

original code checked for the correct version differently:

- LHLD BIOSfE :+ (0200) Load L,H w/contents of 004E, 004F
- LXI B,0048h : (0203) HL=1774, BC=0048
; DAD B : (0206) HL=HL+BC
: MOV A,M :(0207) A=67h there
- CPI 67h ;'g’ :(0208)
- JNZ Errvers :+ (020A) ,049F Jmp if not 67h
LXI H,DMAaddr :(020D),0080 Default DMA address
MOV A,M :(0210) A = # of chars of CmdLine
- see DMAaddr notes above for more info
STA CmdLnNbr +(0211),0828 save CmdLine char count
INX H :(0214)
SHLD CmdLnPtr . (0215),0829 save CmdLine char addr ptr
CALL CO05E4 . (0218) Check chars on command line
LDA CmdLnNbr :(021B), 0828 Get CmdLine char count
ORA A : (021E)
JZ JO037D : (021F) Jmp 1if zero
CALL CO05BO0 ; (0222)
CPI 3Fh ;'?2' $(0225) Is char a '?2'?
JZ Help : Display help message
CPI 2ZAh 3% - Is char a '*x'?
JZ J0434 : (0227) Get partition info
CPI 41h ;'A’ : (022A) Is char < 'A'?
JC ErrDrv ; (022C), 0481 Bad drive name msg
: ANI 5Fh : should we convert to upper case????
: CPI 5BBh 3'[” s+ (022F) Is char > '['?
CPI 50h ;:;'P* : (022F) Is char > 'P', the last legal drive ltr
JNC ErrDrv ; (0231),0481 Bad drive name msg
SUI 41h ; (0234) subtract 41h
STA DrvNbr : (0236),0807 save the drive number (unit 0-16)
CALL CO05B0 ; (0239) Get second CmdLine char
CPI 3Ah ;':' ; (023C) Is char a colon?

6

JNZ
LDA
L.L0244:

CALL
JZ
SHLD
LXT
DAD
MOV
ANT
CEL
JN2Z
LHLD
LXI
DAD
MOV
ANT
MOV
CALL
CALL
ANA
JZ
CPI
JNZ
CALL
LDA
ANA
JZ

ErrDrv ; (023E),0481 No? Bad drive name msg

DrvNbr ;(0241),0807 Load the drive number (0-16)
c05c0 ; (0244) select DskDrv BIOSfunc

ErrDrv 7 (0247),0481 Returns 0 if no drive

DPHaddr 7 (024A) ,L.082B save HL = Disk Parm Hdr (DPH)
B, DPHoset »(024D),0010h

B ; (0250) HL=HL+BC = DPH+10h

A,M ; (0251)

OEOh + (0252) OEOh = 1110 0000b Isolate drive bits
40h ;'@ ;(0254) 2217 (0100 0000) bit set?

ErrDrv ; (0256),0481 Bad drive name msqg, if not 40h
DPHaddr ;(0259),082B set HL = Disk Parm Hdr (DPH)
B, DPHoset ; (025C),0010h

B ; (025F)

A,M ;1 (0260)

OF7h 1 (0261) OF7h = 1111 0l1l1llb Remove ASGNmt bit
M,A 1 (0263) and save remainder

CO5E4 1 (0264)

C05B0 ; (0267)

A : (026A)

RetOS ;(026B) ,047E ;Return to OS

3bh ;'= ; (026E)

ErrPart ;(0270),048D Bad partition name

CO5E4 ;(0273)

CmdLnNbr ;1 (0276),0828 ;Get CmdLine char count

A ;(02?9) A = 0?

ErrPart ; (027A),048D Bad partition name

;You get the idea. Let's hit the highlights of a few other sections:

JO30B:
LXI
DAD
PUSH
CALL
SHLD
POP
LXI
DAD
CALL
DCX
SHLD
XRA
STA

J0326:
LDA
CALL
J2
SHLD
LXI
DAD
MOV
ANI
CPl
JNZ
LXI
DAD
CALL
XCHG
LHLD
CALL
JZ

JO34F:

LHLD
LXI

;dJmp from 0300

D,001Bh ; (030B) Add 001Bh offset
D ; (030E) HL=HL+DE
H ; (030F)
C05D0 ; (0310) save M to A & HL
L0822 ; (0313) save SetDsk Result: DPHaddr or 0000h
H ; (0316)
D,001Eh ; (0317) Add 00l1lEh offset
D : (031A)
c05D0 ; (031B) Save M to A & HL
H : (031E)
1.0824 ; (031F) save addr
A ;1 (0322) Zero A & clear flags
LO82F ; (0323) set HDrive Unit to zero
;dmp from O035A
LO82F ; (0326) Get HDrive Unit
c05Co0 ; (0329) Select DskDrv BIOSfunc
JO035D ;(032C) Returns 0 if no drive
L082D ; (032F) save DMA Buffer Pointer
D,DPHoset ;(0332),0010h
D + (0335) HL=HL+DE
A,M ;(0336)
OE8h ; (0337) OE8h = 1110 1000b
48h ;'H’ ; (0339) 0100 1000b Is 2217 and assigned?
JO034F ; (033B) No, jump
D,0004h ; (033E) Yes, Add 4 to HL
D ; (0341) HL=HL+DE
Cc05D0 1 (0342) Save M to A & HL
+ (0345) HL<->DE
L0822 ; (0346) Load sSetDsk Result: DPHaddr or 0000h
CO5A8 7 (0349) Compare HL to DE
ErrPartu 7 (034C), 0487 Partition already in use
;Drive not Z217 or assigned
;Jmp from 033B
L082D ; (034F) Get DMA Buffer Pointer
D,0018h 7 (0352) Jump 24 bytes to next DPH +offset

DAD
LXI
INR
JMP

JO035D:

JO037D:

- MVI
LXI
CALL
XRA
STA
STA

JO38C:
LDA
CALL
JZ
SHLD
LXI
DAD
MOV
ANI
CPI
JNZ
LXI
MOV
ANA
JNZ
DCR
CALL
JC

JO03B3:
LHLD
LXI
DAD
CALL
SHLD
LXI

JO03C3:

JO3E3:
SHLD
LDA
ADI
CALL
MVI
LXI
CALL
LHLD
MVI
JO3FB:

-

J042D:
LXI
INR
JMP

J0434:
XRA
STA

J0438:
LDA
CALL
JZ
SHLD
LXI
DAD

H,LO82F

J0326

C, 09
D,CRLF1
Pstring
A

L0834
L0835

L0834
Cc05¢cO0
RetOsS
DPHaddr

D,DPHoset

D
A,M
OE8h
48h
J042D
H, L0835
A,M

A

JO3B3
M
CO4ED
ErrRd

DPHaddr
D,0014h
D

CcO05D0
L0822
H,DMABfr

L0836
L0834
41h
Cc05D5
c,09
D,Colon
Pstring
L0836
C,10h

H,L0834
M
J038C

A
L0834

L0834
Cc05CO0
RetoOsS
DPHaddr
D,DPHoset
D

:IHI‘

0355)

- WmE WmMe W

(
(0356) Get HDrive Unit addr
(0359) Inc HDrive Unit
(035A) Do again

;Jmp from 032C ;No drive found

;Jmp from 021F, No chars on CmdLine

; Jmp

; Jmp

¢ JMp

;Jmp

s Jmp

; JmMp

e

: (037D)

¢ (037F),0791 Print CR,LF

: (0382)

; (0385) Zero A & clear flags
;(0386) Save Partition unit#

; (0389) save Copy2 Partition unit#
;Jmp from 0431
 (038C) Load Partition unit#

; (038F) Select DskDrv BIOSfunc

;(0392),047E Returns 0 if no drive - reboot

7 (0395),082B save HL =
0398),0010h

039B) HL=HL+DE =
039C) Get data there

039D)
039F)
03A1)
03A4)
03A7)
03A8)
03A9)
(03AC)
; (O3AD)

e We W™ WME WE W|E W|E WP

OE8h
!HI

Disk Parm Hdr (DPH)
DPH+10h = F8B5

= 1110 1000b
= 0100 1000b?

No, jmp to increment data in 0834
Set Copy2 Partition unit# addr
Get data there

Decrement data in HL

; (03B0), 0499
from 03A9

*(U3B3);

: (03B6)
: (03B9)
: (03BA)
: (03BD)

; (03C0),

082B

save

Save
083C

from 03EOQ

from 03D9

: (03E3)
: (03E6)
: (03E9)
(03EB)
(03EE)
(

e WE W™e W

(03F3)

Save

Load
Make

Disk Read error

Get HL = Disk Parm Hdr (DPH)

M to A & HL
SetDsk Result: DPHaddr or 0000h
128-byte Local DMA Buffer

H & LL from SetTrk BIOSf

Partition unit#
A=drive letter

Display drive letter Conout BDOS func

03F0),0794 ;Print ': =

'S

y(03F6) Load H & L. from SetTrk BIOSf

s (O3F9)

from 0406

from 03A1,03C6

; (042D) Set Partition unit# addr
;(0430) Inc Drive unit#

;(0431) Do again for next partition

from 0227
1 (0434) Zero A & clear flags
; (0435) save Partition unit#

from 0454
; (0438) Load Partition unité#

; (043B) Select DskDrv BIOSfunc

; (043E),047E Returns 0 if no drive - reboot

; (0441),082B save HL =
;(0444),0010h DPH Offset
H|

0447)

Disk Parm Hdr (DPH)

MOV
ANT
CPI
JZ

LXI
INR
JMP

J0457:
CALL
JC

- MVI
LXI
CALL
LXI

J0468:
SHLD
MOV
CPI
J2
CALL
LXI
LHLD
DAD
JMP

Help:
LXI
CALL
RetOS:
JMP

BCRLF:
PUSH
LXT
CALL
POP
CALL
LXT
CALL
JMP

CO4BcC:
PUSH
PUSH
. LHLD
LXI
DAD
CALL
POP
INX
LHLD
LXI
DAD
CALL
POP
LHLD
LXI
DAD
CALL
LHLD
LXI
DAD
CALL
ORA
RZ
STC
RET

-

-

-

-

-8

-

-

A,M
OE1lh
41h
J0457
H, L0834
M

J0438

; IAI

CO4ED
ErrRd
Cc,09
D,PartHdg
Pstring
H,DMABfr

L082D

A,M

20h G
RetOS
c0602
D,001Eh
L.082D

D

J0468

D,HelpMsg
PString

0000

D
D,Bell
Pstring
D
Pstring
D,CRLF1
Pstring
RetOS

H

D

BIOSE
D,SetTrk
D
BIOFunc
B

B

BIOSE
D,SetSec
D
BIOFunc
B

BIOSE
D,SetDMA
D
BIOFunc
BIOSE
D,RdsSec
D
BIOFunc
A

e WE WM WME WE WS WS

(
(
(
(
(
(
(

0448)
0449)
044B)
044D)
0450)
0453)
0454)

Get Partition info

OElh = 1110 0001b 2217 & Pri DPE?
0100 0001b?

Yes, jump

Set Partition unit# addr
Increment Drive unit#

Try next partition

sJmp from 044D
; (0457) Read Disk
; (045A),0499 Disk Read error
; (045D)
; (045F), 0799 Print partition display hdg
; (0462)
; (0465),083C 128-byte Local DMA Buffer
;Jmp from 047B
; (0468) save DMA Buffer Pointer
; (046B)
; (046C) Space?
(046E) ,047E ;Return to OS

r

s W™ WE WmF W

., .

0471)

0474) Add 001lEh offset

0477)
047A)
047B)

Get DMA Buffer Pointer

;Display help screen
;Print help message

;Jmp from 026B,037A,0392,043E,046E, 04B9

; (047E) Return to A>
;Error messages are all similar:

;Jmp from 0484,048A,0490,0496,049C
; (04A2)
; (04A5),078C Bell & CRLF msg
; (04A8)
; (04AD)

; (O4AE) Display any of above msgs after bell

; (04B3),0791 Display CRLF msg
; (04B6)
; (04B9),047E ;Return to 0OS

;Call from 050B,
; (04BC) A=48h; HL=Addr of 128-byte DMA Buffer

0571

; (04BD) BC=DE=0000
; (04BE), 004E
(04C1),001E set Track BIOS function

r

_E ME MA WA WS WA WA WS WA WME ME WA WME WS WA WME ME WME W We WM

(
(
(
(
(
A
(
(
(
(
(
(
(
(
A
A
(
(
(
(
(

04C4)

04C5),

04C8)
04C9)
04cAa)
04CD)
04D0)
04D1)
04D4)

04D5),
, 0024 set DMA addr BIOS function

04D8)
04DB)
04DC)
04DF)

04E5)
04E6)
04E9)
04EA)
04EB)
04EC)

O5AE Execute BIOS function
From PUSH D at 04BD

, 004E
0021 set sector BIOS function

HL=HL+DE

, 05AE

From PUSH H at 04BC
004E

HL=HL+DE

, 05AE
, 004E
04E2),

0027 Read Sector BIOS function
HL=HL+DE

,05AE A=00, BC=09F8, DE=0027, HL=F724

Rets to 050E
Set Carry Flag

CO4ED:

- LHLD
LXT

. DAD
CALL
LHLD
LXI
DAD

DoFunc:

PCHL
RET

CO05BO:
LXI
MOV
ANA
R2Z
DCR
LHLD
MOV
INX
SHLD
RET

Cc05CO0:

MOV
LHLD
LXI
DAD
MVI
CALL
+If drive
;If drive
MOV
ORA

RET

C05DO0:

CO5D5:

CO5E4:

L0685

DB

:call from 02C9,03AD, 0457

BIOSE ; (04ED), 004E
D; CLYBLY ; (04F0) ,003F Clear Buffer BIOS func
D ;s (04F3)
BIOFuUNC : (04F4),05AE
DPHaddr ; (04F7),082B Get HL = Disk Parm Hdr (DPH)
D,DPHoset ; (04FA) ,0010h HL=F8AS5
D : (04FD) HL=HL+DE = F8B5
;Do BIOS function
;Call from 04cC5,04D1,04DC,04E6,04F4,05A3, 05CA
; (05AE) Put HL into PC
; (O5AF)
;Call from 0222,0239,0267,0282,0297,02B2,02C2
H,CmdLnNbr ; (05B0) ,0828 Load CmdLine char count addr
A,M ; (05B3) Get content from HL=0828
A ; (05B4) Is A = 07
; (05B5)
M ; (05B6) The content at HL=0828 is decremented
CmdLnPtr ; (05B7),0829 Get HL = CmdLine char addr ptr
A,M ; (05BA)
H ; (05BB) HL is incremented and
CmdLnPtr ; (05BC), 0829 saved in CmdLine char addr ptr
; (O5BF)
sSelect disk BIOS function
sCall from 0244,0329,038F,043B
C,A ; (05C0) C=Drive 0-15
BIOSE ; (05C1),004E
D,SetDsk ; (05C4),001B BIOS func#9 - sSelect Disk Drive
D ; (05C7) HL=HL+DE
E,O01 ; (05C8) E=Initial sSelect Flag???
DoFunc ; (05CA),05AE HL is moved into PC

exists, HL = Disk Parm Header (DPH) addr, (=B73E for A:)
does NOT exist, HL = 0000h

A,H ; (05CD)
L ; (05CE) A=valid# or 00h if failure
: (05CF)

sSave M to A & HL
;call from 0310,031B,0342,03BA,03CE, 0518,
- U222;052C;0609 ;0614

;Display A=Char Conout BDOS function
;Call from 03EB,0401,040B,041D,0645,0664

;Check for Command Line chars
;Call from 0218,0264,0273,0294,02A3, 02BF

; SpecCharstring
sRef: 062F,0639,0676
22h,2Dh,08h,21h,2Fh, 24h ; (0685)

; Represents: " , - , BS, EpP, / , §
; where BS=Back Space and EP=Exclamation Point

C068B:

;Check sSpecCharstring for 'zero' & make 'space’
;Call from 063C; Jmp from 0693

HL = SpecCharstring addr

If any char of specCharstring <> 30h, return

If any char of SpecCharstring = 30h, make it a space,

and try next char.

A,30h ;0 ; (068B) A = zero

M ; (068D) SpecChar = zero?

; (068E) No, return

; (068F) Yes, make it a space and

; (0691) save it in the string

;(0692) Try next char

20N 3
¢ A

o=

10

; BIOFunc

sEntry:

’
BIOFunc:

LHLD
DAD
CALL
RET

c068B ; (0693) Loop
;Complement DE, Divide BC by subtracting DE
;Call from 0540,0556,0625,062A,069F

DE = Divisor, BC = HL = Number to divide

HL = Number result

;Call from O55F

A = Hdrive unit# (0-3)

BC = Bytes from DMA+26h

DE = Bytes from DMA+2Eh

BC = 2227

HL = 22?227

-- This procedure executes a BIOS function

[DE] = BIOS function number

[Other] = Entry variable as required by function
; (O5AE) Do BIOS function

BIOSE ;Set BIOS base

D

DoFunc s Execute BIOS function

'DAT& & ALTERNATE STACK AREAS

HdgMsg:
DB
DB
DB
DB
DB
HelpMsg:
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
BadDrv
BadPart
Bados
PartUse
BadVer
RAErr
Bell
Ltrk
CRLF1
Colon
PartHdg
DB
DB
Spc2
DrvNbr
Spc22
Spcéd

1Bh,45h,CR,LF, ' '
1Bh,70h, ASGN85 for CP/M Version 2.0
Copyright 1982,

,1Bh,71h,CR,LF
Digital Research' CR,LF

'Modified ASSIGN.COM by Steven W. Vagts, z-100 LlfeLlne, :

1072012 ,CR, LF,"'S"

CR,LF, 'Limitations:

CR,LF, - Only two partitions can be assigned at any time.°
CR; LT, - Drive letters are restricted according to drive
'conflguratlon

CR,LF, Boot Device: Other Drives: Assign Letters:'
CR.LF:;* Hard Drive - No matter - A & B'

CR,LF, 5" floppy Has 8" drives E & F

CR,LF," 5" floppy w/o 8" drives C & D°

CR,LF, "' 8" floppy Has 5" drives E & F'

CR,LF, 8" floppy w/o 5" drives C & D'

CR,LF,LF, 1Bh,70h, 'ASGN85 ?',1Bh,71h,' will display this help '

'5creen, then return to the CP/H prﬂmpt.
CR,LF,LF,1Bh,70h, 'ASGN85 =*°
'the partltlan names on the hard drlve.
CR,LF,LF,1Bh,70h, 'ASGN85 x:={PartName}'
'‘a drive letter (A - F) to the desired',CR,LF
' {Partition Name}.
CR,LF,LF,1Bh,70h, 'ASGN85 (with no parameter):’,
' w111 llEt the asslgnments already prﬂvlded

DB 'Invalid Drive Letter$'

DB 'Bad Partition Name$'

DB ‘'Bad 0OS NameS$'

DB ‘'Partition already in use$* 2

DB ‘'Sorry, you need CP/M v2.x$' $

DB 'Disk Read Error$'

DB BEL,CR,LF,'$"’

DB 6Bh

DB CR,LF,'$"’

DB ':s = '

DB CR,LF," '
CR;LF; PARTITION NAME OS NAME SIZE'
CR,LF, '==mmmmmmmmmmmeee | e e

DB ' $ '

DB O0Ah

DB] []

DB ° * :(0818), 02AF, 02E9

1:1

,1Bh,71h,

,1Bh,71h,' will display a list of

will assign '

1Bh,71h
+CR,LF,;'§"*

: (071B), 0481
: (072A) . 048D
: (073D), 0493
(0749),0487
(0762), 049F

: (077C), 0499
: (078C), 04A5

: (0790),067E
3 (0791),037F, 0427, 04B3

;(0794),03F0

; (0799),045F

; (07B3)

,CR,LF,'$"' ;(07D9)

: (0804),064F, 066C
: (0807),0236,0241

; (0808),027F,02DB

L0822
L0824
L0826
CcmdLnNbr
CmdLnPtr
DPHaddr

LO82D

LO82F
L0830
L0832
L0834
L0835
L0836
L0838

LO83A

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

00h,
00h,

00h,

00h

00h,
00h,
00h,

00h

00h,
00h,

00h

00h

00h,
00h,

00h,

;Store SetDsk Result: DPHaddr or 0000h
;(0822),0313,0346,036D,03BD,03D2

;Store SetTrk addr
;(0824),031F

;Store H & L bytes from DMA+26h
;(0826),052F, 054D
;Number of chars on the command line.
;(0828),0211,021B,0276,02A6,05B0,05E4, 05FA

;Command Line Address Pointer
;(0829),0215,05B7,05BC, 05EA, O5FB

;Disk Parameter Header address
;(082B),024A,0259,035D,0395,03B3,0441,04F7, 0591

;Store DMA Buffer Pointer
;(082D),032F,034F,0468,0477,0535,056E, 057E
s 0585,0602,060D,063F,065A,0685
;Hard Drive unit number
: (082F),0323,0326,0356,054A, 055C, 0588

;Store (DMA+26h)/(DMA+2E) result
;(0830),0559,0565

s;Store H & L. from CO06FB call
;(0832),0562,056A,0577,057B
;Store Partition Letter as a unit#
;(0834),0386,038C,03E6,042D,0435,0438, 0450
;Store Copy2 Partition unit# -
; (0835),0389,03A4

sStore H & L from sSetTrk BIOSs function
;(0836),03E3,03F6,040E

;Store H & L bytes from DMA+2Ch
:{U838) ,051B,0538,0621

;Store H & L bytes from DMA+2Eh
;(083A),0525,0552

00h
00h
00h

00h
00h

00h

00h

00h

00h
00h
00h

;This is an alternate location for our local stack. Due to the way that
;the different versions of CP/M treat the stack during assembly, I've
;moved the stack to the end of the program. However, it must be placed
;before the local DMA Buffer, which varies in size and may overwrite the
;stack 1f the stack is placed last. So the stack is created as follows:

Stack

DMABfr:

DS

DS

DS

28h sReserve space for Stack

;Size can be adjusted to simplify buffer addr
0001h ;Top of stack is here
10h sActually a 128-byte Local DMA Buffer

;(083C),02CF,03Cc0,0465,0508,0511,0532

; This buffer takes some explanation. The last address used in ASSIGN

;was 083C and what appeared to be just 2 bytes long was a replacement
;128-byte local DMA buffer for use by the program. If my experimentation
;was correct, it was placed here such that the end went beyond the end of
;the actual ASSIGN program by about 60 bytes - a space-saving measure!

;Also note: CPM2 and CPM3 each load the default DMA buffer at 0080 with
;the last 128 bytes of the program from the end of a page boundary -
; (xxX00 or xx80).

END

Start

sEnd of program

;To assemble, rename ASGN85.DOC to ASGN85.ASM, eliminate any notes and
;documentation to reduce the size, if necessary, and use CP/M v2's ASM
;and LOAD utilities for all assembly work (see Notes below).

12

5 ¢éOléaa 3 Z-IOO ListLin December 2012 Issue #123

ince 198

:(; :q,f

CP/M Assembly Language Programming Essentials

w

Assembly Language Programming requires access to a lot of material from various
manuals and other sources that you may not have access to. So, I've collected much
of this material and included the information here. I also provide the names of
these source files as we use them and try to explain the workings of each section as
we go.

--------- Page Zero of Low Memory for CP/M-85 (CP/M v2) ————eeee—-

Page Zero of low memory (addresses less than 0100) functions as an interface to the
BDOS module from the Console Command Processor (CCP) and transient programs. It also
contains critical system parameters. The contents of Page Zero are described briefly
here.

For CP/M-Plus, also called CP/M v2, Page Zero has the following definitions:

-- 0000 to 0002h contains a jump instruction to the BIOS warm start entry point.
The address at 0001h can also be used to make direct BIOS calls to the BIOS
console status, console input, console output, and list output primitive
functions. CpP/M2 has C¢3,03,F7.
-— 0003h contains Intel's standard IOBYTE.
-- 0004h contains the current default drive number (0=A,...,15=P).
-- 0005h to 0007h contains a jump instruction to the BDOS and serves two purposes:
- JMP 0005h provides the primary entry to the BDOS.
- LHLD 0006h places the address field of the jump instruction in HL.
- CP/M2 has ¢3,00,CE

-- 0008 to 0027h contains interrupt locations 1 through 5, not used.

--— 0030 to 0037h contains interrupt location 6, not used.

-- 0038 to 003Ah contains a jump instruction into the DDT or SID program when
running in debug mode.

--— 003B to 003Fh are not currently used - reserved.

-— 0040 to 004Fh contain a l6-byte scratchpad area for CBIOS, but is not used.
-- 0050 to 005Bh are not used.

-- 005C to 007Ch contains the default File Control Block (FCB).

-- 007D to 007Fh contains the optional default random record position.

-- 0080 to OOFFh is the default 128 byte disk buffer; also filled with the
command line when the CCP loads a transient program.

Source: For CP/M-85, see page 6.9 of the Digital Research CP/M Operating System
Manual, Chapter 6, Alteration for more information.

Note: The default DMA address for transient programs is 0080h. The CCP also
initializes this area to contain the command tail of the command line. The first
position contains the number of characters in this buffer area.

——————————— BDOS Function Calls for CP/M-85 (CP/M v2) = . e o e e

All versions of CP/M use BDOS Function Calls to perform simple repetitive functions.
The BIOS program will define this BDOS function as:

BDOS EQU 0005h ;BDOS function call

BDOS Calling Convention:
CP/M-85 (v2) uses a standard convention for BDOS function calls.

Entry: [C] contains the BDOS func#
'DE] contains a byte or word value or an info address.
Returns: (A] contains single-byte values

[HL] contains double-byte value or OFFFFh on error.

The BDOS Functions Calls for CP/M-85 (v2) are:

Function Reg C=
Name value/Funci: Input: Output: Description:
Boot equ 0000h /O C=00h None Sys Reboot/Reset
conIn equ 0001h /1 C=01h A=ASCII chr Console Input
ConoOut equ 0002h /2 E=ASCII Chr None Console oOutput
RdArIn equ 0003h /3 A=ASCII chr Reader Input
Pnchout equ 0004h /4 E=ASCII Chr None Punch oOutput
Lstout equ 0005h /5 E=ASCII Chr None ListDevice oOut
conIO equ 0006h /6 E=0FFh (Input) A=Chr or 0 Direct Cons I/O

E=0FEh (Stat) A=Stat or 0

E=Char (Output) Char to Console
GetIObyte equ 0007h /7 None A=IObyte Value Get I/O Byte
SetIObyte equ 0008h /8 E=IObyte None Set I/0O Byte
Pstrng equ 0009h /9 DE=BufrAddr None Print sString
RdConBuf equ 000Ah /10 DE=Bufr conChr in Bufr Read Cons Buffer
constat equ 000Bh /11 None A=00h/NonZero Get Cons Status
VerNbr equ 000Cch /12 None HL & A=Ver# Return Vers#
DiskReset equ 000Dh /13 None None Reset Disk sys
SelDisk equ O00O0Eh /14 E=Disk# None Select Disk
OpenFile equ 000Fh /15 DE=FCB Addr A=DirCode/0OFFh Open File
ClosFile equ 0010h /16 DE=FCB Addr A=DirCode/0FFh Close File
Searchl equ 0011h /17 DE=FCB Addr A=DircCode Search for First
SearchNxt equ 0012h /18 None A=DircCode Search for Next
DelFile equ 0013h /19 DE=FCB Addr =None Delete File
ReadSeq equ 0014h /20 DE=FCB Addr A=ErrcCode Read Sequential
Writeseq equ 0015h /21 DE=FCB Addr A=ErrcCode Write Sequential
MakeFile equ 0016h /22 DE=FCB Addr A=0FFh onErr Make File
RenamFile equ 0017h /23 DE=FCB Addr A=0FFh onErr Rename File
RetLogVec equ 0018h /24 None HL=LoginVecx* Ret Login Vec*
CurentDsk equ 0019h /25 None A=CurDsk# Ret Current Disk
SetDMAadr equ O001lAh /26 DE=DMA Addr None Set DMA Address
GetAddr equ 001Bh /27 None HL=AlloAddr* Get Alloc Addr=*
WrtProDsk equ 001Ch /28 None None Wrt Protect Disk
ROvector equ 001Dh /29 None HL=ROvecValx Get Rd/Only Vecx
FileAttr equ O001lEh /30 DE=FCB Addr A=None Set File Attribs
DPBaddr equ O00l1Fh /31 None HL=DPB Addr Get DPB Address
UsrcCode equ 0020h /32 E=0FFh for Get A=User# Get/Set UsercCode

E=00-0Fh set
RdRandom equ 0021h /33 DE=FCB Addr A=ErrcCode Read Random
WrtRandm equ 0022h /34 DE=FCB Addr A=ErrCode Write Random
CmpFilsz equ 0023h /35 DE=FCB Addr RO, R1l, R2 Compute Filsize
SRndmRec equ 0024h /36 DE=FCB Addr RO, R1, R2 Set Random Rec
ResetDrv equ 0025h /37 DE=DriveVector A=00h Reset Drive
AccessDrv equ 0026h /38 (MP/M function not supported) Access Drive
FreeDrv equ 0027h /39 (MP/M function not supported) Free Drive
WRndmRec equ 0028h /40 DE=FCB Addr A=ErrcCode WrtRndm w/0Fill

* Note that: A

L and B = H upon return.

----------- BIOS Entry Points for CP/M-85 (CP/M v2) - o o e e e o e e

To achieve device independence, CP/M is separated into three distinct modules:
BIOS - Basic I/O system, which is environment dependent
BDOS - Basic disk operating system, which is NOT dependent upon the
hardware configuration.
CCP - The Console Command Processor, which uses the BDOS.
only the BIOS is dependent upon particular hardware configurations.

All versions of CP/M use BIOS Entry Points to send program control to the individual
BIOS routines. Entry to the BIOS is through a 'jump vector', one of a series of jump
instructions. The BIOS routines may be empty for certain functions (i.e., they may
contain a single RET operation) if they are not implemented, but the entries must be
present in the jump vector to avoid changing addresses.

The BIOS program will define the Base Address of this BIOS jump table as:
BIOSf equ O004Eh ;Set 004Eh for CP/M2; 000Dh for CP/M-Plus
The Offset Value is added to the Base Address to jump to the desired BIOS routine.

BIOS Calling Conventions:
CP/M-85 (v2) uses a standard convention for BDOS function calls.

Entry: Varies by function
Returns: [A] contains single-byte values.
[HL] contains double-byte values; OFFFFh on error.

The BIOS Functions for CP/M-85 (v2) are defined in the BIOS85.A86 file as:

Function Offset Dec
Name: Vvalue & Func#: Input: Output: Description:
CBooOtE equ 0000h /0 None None Boot
WBOOtE equ 0003h /1 None None Warm Boot
ConStE equ 0006h /2 None A=0FFh if ChrRdy ConsInput stat
A=0 if no Chr
ConInE equ 0009h /3 None A=ConChr Get ConscChar
ConOutE equ 000Ch /4 C=ConChr None outChr to Cons
LstOutE equ O0O0OFh /D C=Char None outChr to LstDev
PunoOutkE equ 0012h /6 C=Char None outChr to PncDev
RArInE equ 0015h /1 None A=Char InChar frm RdDev
HomeE equ 0018h /8 None None SelTrk0 of Drv
SetDskE equ 001Bh /9 C=DskDrv# (0-15) HL=DPHaddr Select DskDrive
E=InitsSelFlg HL=0000h if no drive
SetTrkE equ 001lEh /10 BC=Track# None set Trk# (0=1lst)
SetSecE equ 0021h /11 BC=Sector# None Set sec# (l=lst)
SetDMAE equ 0024h f12 BC=DMAaddr None Set DMA address
ReadE equ 0027h FX3 None A=0 if succ Read Sector
A=1 if nonrecover error
A=0FFh if media changed
WriteE equ 002Ah /14 C=DeBlkCode A=0 if succ Write Sector
O=NormWwrt A=1 if physical error
1=WrtDir A=2 if disk R/O
2=1stwWrtsec A=0FFh if media changed
LstsStE equ 002Dh /15 None A=0 if NotRdy Get LstDev stat
A=0FFh if DevRdy
SecTrnE equ 0030h /16 BC=LogSec# HL=PhySec# Translate Sec#
DE=TranTblAddr
FormatE equ 0033h /17 C=VerifyFlg A=Status Byte Format Disk
0=No, l=Yes A=0FFh if Rdy
RATrKkE equ 0036h /18 None A=0 if NotRdy Read Track
A=0FFh if Rdy
WrtTrkE equ 0039h /19 None A=0 if NotRdy Write Track
A=0FFh if Rdy
WPCE equ 003Ch /20 None A=0 if R/W WrtProtect Check
A=1 if R/O
ClrBufD equ 003Fh /21 None None Clear Drv Bufrs
PEEK equ 0042h /22 DE=0Offset,HL=Seg A=Value PEEK 8088 Memory
POKE equ 0045h /23 C=Value None POKE 8088 Memory

DE=0Offset,HL=Seg None

3

BIOS Disk Data Structure for CP/M-85 (v2) -—-—-=======--

The BIOS Disk Data Structures describe the particular characteristics of the disk
subsystems used in CP/M. In general, each disk drive has an associated Disk Para-
meter Header (DPH) that contains information about the disk drive and provides a
scratchpad area for certain BDOS operations. One of the elements of this DPH is a
pointer to a Disk Parameter Block (DPB), which contains the actual disk description.

Each DPH in generic CP/M v2 consisted of 16-byte entries, one for each drive that
may be attached to the system. The Heath/Zenith version, CP/M-85 for the H/Z-100,
expanded this to 24-bytes each, adding 8 bytes at the end for certain tasks,
including the assignment of drive letters to hard drive partitions.

As described in BIOsS85.AsM, the first two Disk Parameter Entry Tables were for

physical 2207 5" floppy drives 0 and 1, both currently set for double density, 6 ms
step rate. The second two tables were for physical 2207 8" floppy drives 2 and 3,
both set for double density, with head load solenoids. The last two tables were for
physical Z217 hard drive partitions, DPE2A and DPE2B, labeled Partitions 1 and 2.

Note: The variables given in the Tables are the default conditions. The definitions
from the file BIOS85.ASM are listed below the tables for reference.

I've included the first Disk Parameter Entry Table of each type:
Physical Drive 0 -- 2207 5 1/4":

DPE1A DS
DW
DW
DW
DW
DW
DB
DB
DB
DB
DB
DB
DB
DB

0
000,70
DIRBUF

DPB1A

CsSV1Aa

ALV1A
DPEZ207+DPEDD
0

0

0

DPEUNK
DPEMO+FDFS®6

0

0

Physical Drive 2 -- Z207 8":

DPE1C DS
DW
DW
DW
DW
DW
DW
DB
DB
DB
DB
DB
DB
DB
DB

Z217 wWinchester

DPEZA DS
DW
DW
DW
DW
DW
DB
DB
DB
DB
DB
DB
DB
DB

0
XLATE1

0,0,0

DIRBUF

DPB1C

CcsvilcC

ALV1C
DPEZ207+DPEDD
CONPC+CONDS8+0
0

0

DPEUNK

FDFS6

DPEHLS

0

;Label to mark the table beginning
;Scratchpad area

;Directory Buffer Address

:Disk Parameter Block Address
;Change Disk software Address
;Storage Allocation Address

12207, Double Density

s Track Position unknown
;s Motor-Up-2-Speed & Step Rate 6

;Label to mark the table beginning
sTranslate Table 1

; Scratchpad

;Directory Buffer Address

:Disk Parameter Block Address
;Change Disk Software Address
;Storage Allocation Address

+2207, Double Density

;Set Precomp for 8" drives

sTrack Position unknown
;Step Rate 6
:Drive has Head Load Solenoid

Hard Drive -- Partition 1:

0
0,0,0,0

DIRBUF

DPB2A

0

ALVZ2A
DPEZ217+DPEPRIM
0

WIRPS

(o I an B s B oo Y

;Label to mark the table beginning
; Scratchpad

;Directory Buffer Address

:Disk Parameter Block Address
;Change Disk software Address
;Storage Allocation Address

;2217 and Primary Unit

+:Defines 4 CP/M records/sector

DPE2B is similar, except it has its own DPB2B, the Disk Parameter Block,

and just DPEZ217, rather than DPEZ217+DPEPRIM.

Disk Parameter Entry Description:

DPEXLT

DPEDIRB
DPEDPB
DPECSV
DPEALV
DPEHTH
DPEL
Note:

to the DS opcode, where space is reserved for a variable;

RW
RW
RW
RW
RW
RW
RB
equ

The RB and RW codes above are for use with the A86 Assembler and are similar
RB saves 1 byte, RW saves

O W

24

:Sector Translate Table Address

;Directory Buffer Address

:Disk Parameter Block Address
;Checksum Vector Address
:Allocation Vector Address

; Heath Extensions

;Length of Disk Parameter Entry

2 bytes. RB 8 is the same as DS 8 and RW 3 is the same as DS 6.

Heath
DPEFLAG
DPETYPE
DPENE

DPEZ207
DPEZ217
DPE48RO

DPE96T
DPEASGN

DPETOSD
DPEDD
DPELSIO
DPE2S
DPEPRIM

DPEUNIT
DPERPS
DPERPAB
DPETRK
DPEUNK
DPELPB

DPESEK

DPEFS
DPEMO

DPEUPB
DPEFLG2
DPEHLS
DPEIMG
DPE96TM
DPELUN
DPELOG
DPEREAL

DPEMNT

DPEHL

equ
equ
equ
eqgu
equ
equ

equ
equ

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ

equ

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

equ

equ

Extensions:

DPEHTH+0
11100000b

00000000Db
00100000b
01000000b
00010000b

00001000b
00001000b

00000100b
00000010b
00000010b
00000001b
00000001Db

DPEHTH+1
DPEHTH+2
DPEHTH+3
DPEHTH+4
10000000b
DPEHTH+4

DPEHTH+5

01000000b
10000000b

DPEHTH+6
DPEHTH+6
00000100b

00000010b
00000001Db
DPEHTH+7

11110000b
00001111b

00001111b

8

Disk Parameter Block:

DPBSPT
DPBBSH
DPBBLM
DPBEXM
DPBDSM
DPBDRM
DPBALO
DPBALIl
DPBCKS

RW
RB
RB
RB

RW
RW
RB
RB
RW

= b e e e e

;Flags

;Bit 7-5 = Device Type

+ Non-existent

; 2207

> g211

+Bit 4 -- For 2207

: 48TPI Media in 96TPI Drive (R/O)
;Bit 3 -- 0=48TPI Drive 1=96TPI Drive
;Bit 3 -- For 2217 Winchester Disk

; 0=Unassigned a Partition

- l=Assigned a Partition

;Bit 2 -- 1=Track 0 is Single Density
;Bit 1 -- 0=single Density, 1l=Double
;Bit 1 -- 2217 Logical Sector I/0
:Bit 0 -- 0=Single sided, 1l1l=Double
;BIT 0 -- 2217 Primary DPE for unit

+Unit Select Value

;CP/M Records per Physical Sector
;CP/M Records per Allocation Block
; Track Counter

sTrack Position Unknown

;2217 Lower Partition Boundary

: (Logical sector #)

;Motor Speed and Seek Speed

;Bit 3- 0 = Seek Speed Value

;Bit 6 Fast Step for 2207

+Bit 7 Motor Up to Speed Flag

- 0=1 Sec, 1=250 MSec

12217 Upper Partition Boundary+l
:2nd Flag Byte

Il

;Bit 2 = Drive has Head Load Solenoid
;Bit 1 = Imaginary Drive
:Bit 0 = 0=48TPI Media, 1=96TPI Media

;Last Logical Unit mounted
;CP/M Logical Drive Name for this entry
;For Imaginary Drive, Logical Drive
Name for corresponding Real Drive
s For Real Drive, Logical Drive Name

for Currently Mounted Disk
Length of Heath Extension

-e

-

=we Wma

;Sectors per Track

:Block shift Factor

sBlock Mask

sExtent Mask

:Total # of Blocks-l1

;# of Directory Entries-1
+Initial ALO Value

:Initial ALl Value

;Size of Directory Check Vector

DPBOFF RW 1 ; Number of System Tracks

DPBL equ 15 ;Length of Disk Parameter Block
CP/M Related values:

WIRPS equ WICSz/128 ;CP/M Records per Sector
WIRPT equ WIRPS*WINSPT ;CP/M Records per Track
WINST equ 1 ;# of System Tracks

WINSYS equ WINST*WINSPT ;# Sectors in System Track(s)
WIMIN equ 1024/WICSZ*64+WINSYS ;Min # useable Sectors
WIMAX equ 1024/WICSZ*8*1024+WINSYS ;Max # useable Sectors
Z217 Equates:

WINSPT equ 18 ;# Physical Sectors per Track
WICSZ equ 512 ;Cell size used

Type 1 Command Step Rate Flags:

FDFSRM equ 00000011b ;Step Rate Mask

FDFS6 equ 00000000b ;Step Rate 6(3) MS

FDFS12 equ 00000001b - 12(6)

FDFS20 equ 00000010b - 20(10)

FDFS30 equ 00000011b - 30(15)

Control Register Flags:

CONDS equ 00000011b ;Drive Select Bits

CONDS8 equ 00000100b : 0=5", 1=8"

CONDSEN equ 00001000b ;Drive Select Enable

CONPC equ 00010000b ;Write Pre-compensation

5" 0O=Yes, 1l=No
8" 0=All Tracks, l=Tracks 44-76

e "W

CONSFS equ 00100000b ;5" Fast Step
CONWE equ 01000000b sEnable wait for DRQ or IRQ
CONSD equ 10000000b ;Enable Single Density

XLATE Table Addresses:
XLATES DS 0
DW 0

XLATE Table Addresses
No XLATE

DW XLATEL 8" single Density

DW XLATE2 8" Double Density
XLATE1 DS 0 ;8" Single Density Sector Translate Table

DB 2 1313;19,25

DB Sedd, 11,23

DB 3;9,15,21

DB 2,8,14,20,26

DB 6,12:;18,24

DB 4,10,16,22
XLATE?2 DS 0 ;8" Double Density Sector Translate Table

DB 1.,2,19,20,37,38

DB 3,4,21,22,39,40

DB 5:;0;23;24,41,42

DB 7,8,25,26,43,44

DB 9,10,27,28,45, 46

DB 11,12,29,30,47,48

DB 13,14,31;32,49;,50

DB 15,16,33,34,51,52

DB 17,18,35,36

we e Wme W

Other Definitions Used Above (found at end of BIOS85.A86):

DIRBUF DS 128

-- Directory Buffer, 128 bytes long
DPB1A,DPB1B,DPB1C,DPB1D,DPB2A,DPB2B DS DPBL ;DPBL = 15 bytes

-- DPB - Disk Parameter Blocks for every drive, 15 bytes long
CSV1A,CSV1B,CsV1C,CSV1D DS 64 ;Floppy Drives only

-— CSV - Address of software to check for changed floppy disks, 64 bytes
ALV1A,ALV1B,ALV1C,ALV1D DS 77 sAll Floppy Drives
ALV2A,ALV2B DS 256 :HD Partitions

-—- ALV - Address of area to keep track of a disk's storage allocation

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

