Joystick on the Z-100

This probably caught you by surprise, as it did
me. So, let me start with some background.

Way back in issue #54, I did a review of some
AVES (Audio Visual Entertainment Software)
Games, which included one called “Silent Runner”
which included the capability to use an Atari
joystick on the 7-100.

SILENT RUNNER

SILENT RUNNER

SILENT RUNNER has the player climbing ladders,
crossing ropes, and digging holes in order to
collect the gold sacks distributed around the
various display screens. There are also fierce
creatures that are out to get you and prevent
you from collecting the gold. Play can continue
through 99 different screens, plus an editor
allows you to design your own custom screens.
You can control the speed of the game and high
scores are saved to disk.

To avoid these fierce creatures, you can dig a
hole and jump through it before it closes, or
trap the monsters in them temporarily. Monsters
will get stuck for a little while and, if you
time it right, they will be destroyed - but only
to come back out their little door again. This
has the sole effect of delaying them slightly,
or maybe moving them to another part of the
board. If you get stuck in a hole, you will
suffocate, lose a man, then start the level
over. You can use ropes; the monsters can't.

The joystick works like you would expect it to,
with up, down, left, and right all in their
normal places.

2-100 LifeLine

Since

This article was first published in issue #55,

B O 0 0 P 0 0 P 0 0 P 0 0 P o P P 0 P P 0 0 P o 0 P 0 0 P 0 0 P 0 0 PN N 0 PN N 0 N 0 P N 0 0 N 0 0 N 0 0 0 o

March 2022

k3 8 #WEB

February 1998

However, since there is only one button on a
joystick, you control the hole digging a bit
differently. When the joystick button is de-
pressed, a hole is dug to whatever side (left
or right) the joystick is directed toward.
This will dig a hole in front of you if you
are running and hit the button.

Hint: For accurate digging, center the joystick,
press the dig button, and then move the joystick
in the appropriate direction.

type
(J3) .

The joystick must be the digital (switch)
and connected to the Z-100 parallel port

T N a

=

H Z-110 / Z-120 Series Computer

o seseme i

SN\
J1-DCE J2-DTE J3 - Parallel J4 - Light
DB-25(F) DB-25(M) DB-25(F) Pen
Serial Serial Centronics
Printer Modem Printer
Figure 1.

Z-100 Parallel Port (J3)

No device driver is needed and joystick opera-
tion does not disable the keyboard - a much
slicker operation than the arrangement in
STARHAWK (another AVES game) .

Joystick operation requires a special adaptor
cable. See the next section.

Some final comments:

- The button on my joystick in SILENT RUNNER
was very erratic on my computer. In some areas
it dug a hole, in others, it would not - where
the keyboard would work fine (flaky joystick?).

- I have not tried a mouse on either game, but
I think it would be less natural in operation
than the joystick.

Joysticks on the Z-100!?

So, what is all this foofaraw over operating a
joystick on the Z-100's parallel port?

Well, the Z-100's parallel port is output only,
except for certain status signals that the
computer must recognize from the printer or
other peripheral device. You know the signals -
busy, off, out of paper, etc.

Well, the people of Audio Visual Entertainment
Software have cleverly used these same signal
lines to operate the joystick!

So, let's look at the hardware connection first.

The joystick must be a digital (switch) type
joystick, similar to the joysticks that came
with the early ATARI games that played on a
television screen. These came with a 9-pin
connector that must be adapted to the Z-100's
25-pin parallel port, J3.

The joystick's cable is somewhat short for
comfortable use on the Z-100, so the adaptor
cable could also serve as an extension cord
(about 2 foot long, is best).

G\Buttun
/

— | UP{E)
59\ L /B]
bane
Connector Le_fi',@__"
o E} Bl

1-100 Parallel Port, J3

Figure 2.
Z-100 Joystick Circuit

According to the Z-100 Technical Manual, the
printer port is a parallel port with handshaking
capabilities. The pinout of the parallel port,
J3, is defined as:

SIGNAL
PIN: NAME : FUNCTION:
1 STROBE A pulse that clocks data
2 PDATAL Data to the peripheral
3 PDATA2 Data to the peripheral
4 PDATA3 Data to the peripheral
5 PDATA4 Data to the peripheral
6 PDATAS Data to the peripheral
7 PDATAG6 Data to the peripheral
8 PDATA7 Data to the peripheral
9 PDATAS Data to the peripheral
10 ACKNLG Acknowledge signal from the printer
11 BUSY Printer not ready, when this signal
is high
12 GROUND Ground
13-14 (not used)
15 ERROR Error signal from printer, when this
signal is low
16 INIT Pulse signal that initializes printer

17-25 GROUND Ground

As can be seen from Figure 2, the switches of
the joystick short the respective data line to
pin 11, the BUSY signal line.

According to the manual, the BUSY line asserts
if the printer cannot accept a data byte at the
time a STROBE signal occurs (when data is ready
to be sent to the printer). The BUSY line causes
an interrupt which stops the printing until the
BUSY line goes to its inactive state.

The Z-100's 68A21 Parallel port uses addresses
E3, E2, El, and EO. The BUSY signal is identi-
fied as bit zero of port E2.

Now, we had stretched my knowledge to the limit
and I had to start stretching to reach three
possible theories of operation:

First, somehow, each data line and switch could
form a certain bit pattern to comprise the BUSY
signal byte on pin 11. This byte could then be
tested to figure out which switch is closed.
This is doubtful, however, because the best I
can figure out, the BUSY signal itself is just a
Bit with two levels or wvalues, high or low.
Scratch this one.

Second, the 68A21 device's data lines can be
programmed as input, as well as output. However,
these data lines are coupled to the connector
pins through a 74LS244 device, which limits the
lines to output only. Scratch this one, also.

Third, it could be possible to program an output
strobe signal to send to the joystick via the
parallel port's pins 2 thru 6 (or more) in
order, such that if the BUSY line goes high at
any time, the output line at the time would have
caused the change in the BUSY signal. Knowing
this, the program could then recognize which
switch was closed and take the appropriate
action.

This third method would cause delays in the
program over the other methods, but this would
have minimal impact on the type of program like
SILENT RUNNER where screen activity is already
relatively slow.

Normally, eight bits of data are sent to the
printer via signal lines PD1-PD8, pins 2 thru 9
of the 25 pin connector. PDl and PD2 are con-
trolled by bits 0 and 1, respectively, of port
address EO. While PD3 thru PD8 are controlled by
bits 2 thru 7, respectively, of port address E2.

Could this strobe signal be as simple as sending
a 00000001 to port EO, a 00000010 to port EO, a
00000100 to port E2, a 00001000 to port E2, and
a 00010000 to port E2 (for 5 switches), in a
series, and waiting for a BUSY signal after
each? After each series of output/input, take
time to do any other activity, then start the
series again?

Food for thought, and worth experimenting with.
If any of you have other ideas, let me know. I

hope to have more information on joysticks next
time. And that is where I ended it...

In the last issue, we discussed the use of a
digital joystick from the popular Atari game
computer on the Z-100's parallel port.

Of course, the Z-100's parallel port is output
only, except for certain status signals that
the computer must recognize from the printer
or other peripheral device, such as busy, off,
out of paper, etc.

But these status signals can be used for the
Z-100 to sense which switch of the joystick is
closed and process the signal accordingly.

As we saw from Figure 2, the switches of the
joystick short the respective data line to pin
11, the BUSY signal line.

Haven't Got an Atari Joystick?

John Anderson published an article in the
October 1982 issue of "Creative Computing" that
describes an excellent alternative, using
pushbuttons.

This has several advantages over the conven-
tional joystick:

- On the Z-100, you can eliminate the need to
play with a 9-pin connector. Wire it directly to
a 25-pin connector using the diagram above.

- You can make the cable longer and it will be
more reliable because of the fewer cable
connections.

- On some types of games, the pushbuttons are
more effective than a joystick. The Asteriods,
Space Invaders, Galaxian, and other games in
arcades actually used buttons rather than
joysticks.

John used Radio Shack momentary contact push-
button switches positioned in a Radio Shack
project case.

There are two common button configurations. The
first is the "classic" Asteriods format.

()
(L) (R) (D) (T)

The second is more like the positioning rela-
tionship of a joystick, a "clock-directional"
format:

(U)
(L) (R) (T)
(D)
Where:
(T) = Trigger
(L) = Left
(R) = Right
(D) = Down
(U) = Up

Theory of Operation:

As can be seen from Figure 2, the wire common to
all the switches is connected to the parallel
port's BUSY signal.

The Z-100's 68A21 Parallel port uses addresses
E3, E2, El, and EO. Ports EO to E3 are 224 to
227 decimal.

The various signals of the 68A21 Parallel Port
are shown in Figure 3. Of concern to us are:

CAl = LTPNSTB (Light Pen Strobe)
CAZ2 QVIDINT (Latched Vertical Sync)
CB1 ACK (Printer Acknowledge Signal)
CB2 = BUSY (Printer Busy Signal)

The 68A21 and associated circuitry perform three
functions:

* Parallel Printer Port
* Light Pen Port
* Couples video retrace signal to CPU

The 68A21 is configured as a parallel printer
port. The CPU programs the 68A21 and controls it
during data transfer.

This printer port uses portions of both port A
and port B in the 68A21. The eight bits of data
out to the printer, PD1-PD8 and pins 2 thru 9 of
the 25 pin connector, are assigned to port
address EO, bits 0 and 1, and to port address
E2, bits 2 through 7 respectively.

Data is latched at the printer by pulsing the
STROBE signal (Port A, bit 2). The printer may
respond by activating the BUSY signal, which can
be interrogated for a "level" (zero) condition
by reading Port B, bit 0, or for a transition by
appropriate use of the CB2 input and control
bits. The printer may also respond by pulsing
the ACK line, which may be detected through use
of the CBl input and the CBl control bits.

The printer error signal, ERROR, is read by Port
B, bit 1, but will not be used here.

So, in short, the BUSY line asserts when data is
sent to the printer port via PD1 thru PD8. The
BUSY line is identified as bit zero of port E2
(226 decimal) .

By strobing an output strobe signal to send to
the joystick via the parallel port's pins 2 thru
6 (or more) in order, such that if the BUSY line
goes level (zero) at any time, the output line
at the time would cause a change in the BUSY
signal. Knowing this, the program could then
recognize which switch was closed and take the
appropriate action.

68A21 Parallel Port (E0-E3)

Port
Address 7 6 5 4 3 2 1 0
o Peripheral

EO(CRA2=1) CLPHT | LPSWT CVINT VIDINT INIT STROBE PD2 PD1 | Register A
Data

EO(CRA2=0) 1 0 1 0 1 1 1 1 Direction
Register A
Control

E1 IRQA1 IRQA2 CA2 Control CRA2 CA1 Control Register A

E2(CRB2=1) PD8 PD7 PD8& PD5 PD4 PD3 ERRCR BUSY | Peripheral
Register A
Data

E2(CRB2=20) 1 1 1 1 1 1 0 0 Direction
Register B
Control

E3 IRQB1 IRQB2 CB2 Control CRB2 CB1 Control Register B

Figure 3.

68A21 Parallel Port (J3)

This time consuming method slows a program
considerably, but this would have minimal impact
on the type of program where screen activity is
already relatively slow, such as our "SILENT
RUNNER" .

Software:

Our first job is to see what happens at port
address 226, bit 0, when we send various output
signals, with the joystick attached. I am using
a ZBASIC program, but other languages could be
used just as easily.

100 PRINT "Test of the parallel port."

110 PRINT "Runs until a CTRL-C is typed."

120 REM Send a number out and read port 226 (E2).

200 OUT 226, #: REM Where # is the decimal number
to send to port E2

210 A=INP(226): REM Check BUSY bit

300 PRINT A;:GOTO 200

This simple routine would send a number (#), of
your choosing to port address 226 and return a
number from the command INP (226) as a value of
A. It would then print this value. If a switch
of the joystick was closed at any point, the
value of A would drop one unit as a reaction.

This worked great for checking the functions of
Up, Down, and Fire. So we knew the input signal,
INP (226) was reacting to different input numbers
and joystick functions. The BUSY signal went to
zero if certain operation of the joystick
occurred.

But Left and Right did not work, because these
used the first two bits of port EO (Address
224) .

Modifying line 200 to:

200 OUT 224, 4#

produced the desired results, but had a serious
problem. It seems that any number output to port
224 causes the cursor to freeze upon exiting the
routine! It also caused the value of INP(226) to
react differently:

For example, for OUT 224, #:

Normal Binary
Out Binary Value Value
DEC#: Value: of A: of A:
1 00000001 255 11111111

Moving left alone caused A to drop to 254
(11111110)

2 00000010 255 11111111

Moving right alone caused A to drop to 254
(11111110)

However, upon testing each number and exiting,
the cursor would reappear and then freeze some-
where on the screen. And, even though you could
type in commands and list the routine, the
cursor never moved and the commands or routine
would display elsewhere on the screen, in

columns, but not at the left margin! The only
fix was to reboot!

I have NOT been able to resolve this problem.
I would be interested in knowing if this is
experienced in other languages, or if it is a
bug to ZBASIC alone.

A workaround was simple. In the wiring diagram
of the 25-pin connector, I jumpered pin 2 to pin
7 and pin 3 to pin 8, allowing us to use only
port 226 for all our joystick functions. It also
left one pin left, pin 9, for an additional
function switch, if you were building your own
joystick.

I left pins 2 and 3 connected to permit using
the joystick with the AVES games discussed
earlier.

Using the above test routine now gave the
results in the following paragraphs. Only one
number can be tested at a time. But, to shorten
the listed results, I'm going to group the
numbers. Except for the first three numbers
output, 1-3, the numbers are in groups of four,
4-7, 8-11, etc. The numbers in each group had
the same result.

Binary Normal Binary
Out Value of Value Value
DEC#: First #: of A: of A:
1-3 00000001 3 00000011

Pressing the Fire button or moving in any
direction caused A to drop to 2 (00000010).

4-17 00000100 7 00000111

All but Down caused A to be 6 (00000110). Thus
remember 4 for "Down".

8-11 00001000 11 00001011

All but Up caused A to be 10 (00001010). Thus
remember 8 for "Up".

12-15 00001100 15 00001111

All but Up or Down caused A=14 (00001110).
16-19

00010000 19 00010011

All but Fire caused A=18 (00010010). Thus
remember 16 for "Fire".

20-23 00010100 23 00010111

All but Fire & Down caused A=22 (00010110).
24-27 00011000 27 00011011

All but Fire & Up caused A=26 (00011010).
The tests continued until we found that:

Number 32 singled out Right
Number 64 singled out Left

These gave us our 5 functions of the joystick.
Number 128 would single out another function,
if one existed.

It was easy to then write a program to check out
the theory discussed above and demonstrate joy-
stick use.

100 PRINT "Test a joystick routine."

110 PRINT "It will run until a CTRL-C is typed."
120 REM Strobe each output in turn.

130 REM Get BUSY bit; AND with 1; and check status.
200 OUT 226,0: REM Clear port E2

210 A=INP(226) AND 1l: REM Check BUSY bit

220 IF A=1 GOTO 600

300 OUT 226,4: REM Output 00000100 to port E2
310 A=INP(226) AND 1: REM Check BUSY bit

320 IF A=1 THEN PRINT "Down": GOTO 600

350 OUT 226,8: REM Output 00001000

360 A=INP(226) AND 1l: REM Check BUSY bit

370 IF A=1 THEN PRINT "Up": GOTO 600

400 OUT 226,16: REM Output 00010000

410 A=INP(226) AND 1: REM Check BUSY bit

420 IF A=1 THEN PRINT "Fire": GOTO 600

500 OUT 226,32: REM Output 00100000

510 A=INP(226) AND 1l: REM Check BUSY bit

520 IF A=1 THEN PRINT "Right": GOTO 600

550 OUT 226,64: REM Output 01000000

560 A=INP(226) AND 1: REM Check BUSY bit

570 IF A=1 THEN PRINT "Left"

600 GOTO 200

For some reason, lines 200-220 are needed to
clear the port. There is a problem with some
spurious signals, but I have not found the
reason.

Let's see what happens with a practical example.

This program begins with a box on the screen.
The joystick controls the movement of the box,
left/right and up/down. With the addition of a
second button, it could also control the size of
the box, but we only have one button. So I've
made it a toggle - between up/down movement and
size adjustment. The result is an excellent
example of how a joystick can be used.

10 CLS: DEFINT A-Z

20 PRINT "This is a test of a joystick routine."

30 PRINT "Runs until {Q} (Quit) or {E} (End)."

40 PRINT:PRINT "The box moves in the direction of
the joystick."

50 PRINT "The FIRE button toggles between up/down
& fore/aft movement."

100 X=200:X1=X:Y=200:Y1=Y:Z=4:Z21=Z:D=0

110 AS$="U20R20D20L20" 'Make a box

150 IF Z<1 THEN Z=1 '"S" cannot be zero

160 PSET (X1,Y1l),0:DRAW "S"+STRS (Z1)+AS$S 'Erase box

170 PSET (X,Y),7:DRAW "S"+STRS (Z)+AS$ 'Display new box

200 'Strobe each output in turn.

210 'Get BUSY bit; AND with 1; and check status.

220 OUT 226,0 'Clear port E2

230 A=INP(226) AND 1 'Check BUSY bit

240 IF A=1 GOTO 600

300 OUT 226,4 'Output 00000100 (DOWN) to port E2

310 A=INP(226) AND 1 'Check BUSY bit

320 IF A=1 AND D=0 THEN Y=Y+10: GOTO 600 'Moves down

330 IF A=1 AND D=1 THEN Z=Z-1: GOTO 600 'Decrease size

350 OUT 226,8 'Output 00001000 (UP)

360 A=INP(226) AND 1 'Check BUSY bit

370 IF A=1 AND D=0 THEN Y=Y-10: GOTO 600 'Box moves up

380 IF A=1 AND D=1 THEN Z=Z+1: GOTO 600 'Increase size

400 OUT 226,16 'Output 00010000 (FIRE)

410 A=INP(226) AND 1 'Check BUSY bit

420 IF A=1 AND D=0 THEN D=1: GOTO 600

430 IF A=1 AND D=1 THEN D=0: GOTO 600

500 OUT 226,32 'Output 00100000 (RIGHT)

510 A=INP(226) AND 1 'Check BUSY bit

520 IF A=1 THEN X=X+10: GOTO 600

550 OUT 226,64 'Output 01000000 (LEFT)

560 A=INP(226) AND 1 'Check BUSY bit

570 IF A=1 THEN X=X-10

600 E$=INKEY$: IF E$="" GOTO 150
610 IF ES$="g" OR ES$="Q" GOTO 700
620 IF E$="e" OR ES$="E" GOTO 700
630 GOTO 150

700 END

Well, this program works well, but it still has
a problem with spurious inputs from somewhere.

The AVES games that use the joystick do not seem
to have a problem using port 224 or with spur-
ious inputs, although "SILENT RUNNER" does not
always seem to recognize a selection from the
joystick.

I suspect that my joystick is erratic and
perhaps this would work better with a different
one. I hope one of you can confirm my issues, or
provide ideas on how to make the joystick
operation more efficient?

Have fun with this project.

If you have any questions or comments,
email me at:
z100lifeline@swvagts.com

Cheers,

Steven W. Vagts

please

mailto:z100lifeline@swvagts.com

