
2025

 March 2025

#WEB
 This article was first published in issue #87, June 2003

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

“Z-100 LifeLine”
SCSI Controller

Manual

by Steven Vagts
Editor, “Z-100 LifeLine”

“Z-100 LifeLine”

SCSI Controller

Manual

SCSI Host Adaptor &
Bootable EEPROM Board
Copyright (C) 1992

When Zenith and Microsoft support moved on from
supporting the Z-100 series computer to devel-
oping PC hardware and software in the late
1980s, it quickly became apparent that any
additional work on the Z-100 would have to be
done within the Z-100 community. This was the
driving factor for Paul Herman to begin pub-
lishing the "Z-100 LifeLine" in 1989. The
purpose of the "LifeLine" was (and still is) to
provide a central point for dissemination of
information and development between venders,
research teams and the ultimate users.

One of the first projects was the development of
a new “Z-100 LifeLine” SCSI Host Adapter, also
referred to as the LLSCSI Controller Board, to
replace the aging "Winchester" MFM hard drives.

Originally conceived at the 1990 Z-100 Get-
Together in Norfolk, Virginia, the SCSI/EEPROM
board was a product of 1-1/2 years of research
and development. Under the auspices of “Z-100
LifeLine”, a development team was selected in
November of 1990, and production units were
first delivered in March of 1992.

A full team of volunteers began work on this
project in 1990:

  Paul F. Herman       Project Coordinator,
                       EEPROM programming,
                       Marketing

  Robert F. Hassard    Engineering design,
                       Prototype development

  Robert W. Donohue    MTR-100 ROM and BIOS
                       programming

  William E. Flanagin  SCSI programming

  Travis J. Barfield   Parts acquisition &
                       Manufacturing

  Michael Zinkow       Z-DOS development

  John Beyers          BIOS programming &
                       Z-DOS utilities 

The following is a heavily modified portion of
the original distribution documentation for the
“Z-100 LifeLine” SCSI Host Adaptor/Bootable
EEPROM Board. Publication here is for historical
documentation and all rights are reserved.

Introduction:

The “Z-100 LifeLine” SCSI Host Adaptor/Bootable
EEPROM Board, hereafter referred to as the
LLSCSI/EEPROM Board, was a multifunction S-100
board designed for the Heath/Zenith Z-100 Series
computer. It provided the following features:

  -  An industry standard SCSI Host Adaptor.
This allowed you to connect fixed or removable
media hard drives, tape backup units, CD-ROM
drives, floptical drives, or any other device
which included an imbedded SCSI controller, to
your Z-100 computer.

1



Note: Software released with this board only
supported fixed and removable media hard drives.

  -  A Bootable EEPROM Device. This non-volatile
memory device, based on the AM28F020 flash
programmable EEPROM, could be programmed at any
time without removing it from this board.
Programming software was provided with the
board. The EEPROM device was fully bootable and
could contain up to 256Kb of user selectable
programs or files.

  -  A Hardware Breakout Switch. The breakout
switch circuitry worked by generating a non-
maskable interrupt (NMI) on the S-100 bus.
Firmware to support the breakout switch for
debugging was provided in the MTR-100 Monitor
ROM, beginning with version 3.1.

System Requirements:

For proper use of all features, the LifeLine
SCSI/EEPROM board required the following:

  -  An H/Z-100 computer. Use with other S-100
based computers was NOT supported and is
unlikely to work.

  -  The EEPROM programming software, which was
provided. This software required at least 448Kb
of system memory.

  -  Monitor-ROM (aka MTR-ROM or ZROM) v3.1 up
to ZROM v4.24 (more on this later), which had to
be installed in order to boot from the EEPROM.

  - Zenith’s MS-DOS (aka ZDOS) v3.1 operating
system, which was required to boot from the
EEPROM and for the SCSI support software.

  -  Z-100 BIOS (IO.SYS) v3.10 or later. This
BIOS included a device driver for the EEPROM
device, plus other features not found in
Zenith's BIOS. This BIOS was included with the
SCSI/EEPROM board package.

Hardware Installation:

This section will describe the configuration
used for testing the Z-100 LifeLine SCSI Con-
troller board under ZDOS v3.10 and under ZDOS
v4.06 (which updated the software for the LLSCSI
board when the LLIDE Controller also came on the
scene. We will use the SyQuest SQ555 SCSI drive
with the LLSCSI controller.

The SCSI/EEPROM board required installation in
accordance with the following steps:

CAUTION: Before doing anything to your Z-100
system, STOP and make duplicate copies of the
software disks provided with this package. Put
the originals in a safe place and use the
copies.

1. Install the MTR-100 Monitor ROM, versions 3.1
to 4.24, by following the instructions in your
Z-100 User's Manual. Be sure to set the mother-
board jumpers J-101 and J-102 both to position
1 (bridging the pins nearest the left edge of
the motherboard).

2. The motherboard DIP switch (located at the
right rear corner of the motherboard, just
forward of the S-100 Bus card cage) has several
functions.

The S101 switch sections are defined as:

    Section:  Description: 
0   Default boot device*
1   Default boot device*
2   Default boot device*
3   1= Auto boot, 0= Manual Boot
4   Not used
5   Not used
6   1= Dvorak keyboard, 0=Qwerty
7   0= 60 Hz, 1= 50 Hz operation

* Sections 0, 1, and 2 should be set to reflect
the type of drive that the system is to boot
from:

    Section   Boot
    0  1  2   Device Type:
    0  0  0   5-1/4" Floppy Disk Drive
    1  0  0   8" Floppy Disk Drive 
    0  1  0   Winchester Hard Disk Drive
    1  1  0   EEPROM (SCSI) Device
    1  1  1   NVsRAM (LLIDE) Device

2



For now, set S-101 to the following settings:

  0    1    2    3    4    5    6    7
 Off  Off  Off  Off  Off  Off  Off  Note

Note: The default boot device is now set for the
5" Floppy Drive. Set section 7 to OFF for 60 Hz
operation, or ON for 50 Hz operation.

3. Set the jumpers on your SCSI hard drive for
the correct logical unit number. Any number
between 0 and 5 could be selected. Generally,
your first drive will be unit 0, the second will
be unit 1, etc. Unit number 6 is reserved for
the SCSI Host Adaptor Board itself, and unit
number 7 is reserved for a tape backup unit.
The default device ID number on the SYQuest
SQ555 is zero, so for us, no jumper is needed.

4. Install your SCSI hard drive(s). The instal-
lation details will vary and are left to you.
Usually, today's small 3.5" drives should fit
nicely somewhere on the inside of your Z-100's
case. Power is generally provided via a standard
drive power connector, similar to that used by a
floppy drive. Be sure to follow the drive manu-
facturer's specifications when installing the
drive.

Note: If you currently have a Z-217 controlled
hard drive in your system, you may leave it
installed. The SCSI/EEPROM board will coexist
peacefully with the Z-217.

5. Install the SCSI/EEPROM Board in any avail-
able S-100 bus slot. If possible, leave at least
one open slot in front of the board to aid
cooling. I have NOT noticed any heating issues.

6. Mount the Breakout Switch in a convenient
location so that it can be accessed with the
case closed. Back-panel mounting should be fine
for occasional use. Programmers who expect to
make use of the breakout switch may want to
connect it to a long cable, where it can be
brought to the front of the machine when in use.
Connect the breakout switch cable to connector
J2 on the SCSI/EEPROM Board.

IMPORTANT NOTE: If you will NOT be using the
breakout switch feature, you MUST place a
shorting jumper over the LEFT two pins of
connector J2 at the right side of the LLSCSI
board.

7. Connect the 50-pin SCSI ribbon cable from the
drive to the connector on the SCSI/EEPROM Board.
Pin one is located toward the center of the
board next to the logo. Double check to ensure
you connect the cable correctly.

Testing the Hardware:

Use the following procedures to test your
installation:

1. Turn the power on. You should hear the usual
two beeps and get a hand prompt. If not, check
the ROM installation, the settings of J-101 and
J-102, and your cable connections.

Caution: DO NOT play with the monitor commands
at this point. In particular, DO NOT issue the
{J}ail command.

Note: The ‘Jail’ command (Monitor ROM v3.x)
causes the CPU trap flag to be toggled. The trap
flag is used to initiate single-step execution,
and then using the ‘{G}o’ command for a single
step. To continue normal program execution,
execute the ‘Jail’ command again to toggle the
trap flag off. Beginning with MTR-ROM v4, the
‘Jail’ command was replaced by a much more
comprehensive set of programming options.

2. Boot the system with MS-DOS v3.1 or later.
You can boot from a floppy or a Z-217 controlled
hard drive. The DIP switch has been set so the
default boot device is the 5" Floppy Drive, so
you can just press {B} for Boot, and press
{RETURN}. Or you can manually select the boot
device by using one of the following command
sequences (If the device is installed):

   {B}oot {F1} boots from the 5-1/4 inch floppy
   {B}oot {F2} boots from the 8 inch drive
   {B}oot {F3} boots from the Z-217 hard drive
   {B}oot {F4} boots from the SCSI EEPROM, or
   {B}oot {F4}{p} boots from the SCSI EEPROM
   {B}oot {F4}{s} boots from the IDE NVsRAM

Where:
   {P} or {p} is the Primary EEPROM device
   {S} or {s} is the Secondary NVsRAM device

3. You should now be at the DOS prompt.

4. If you installed the breakout switch, try
activating the switch. You should get a display
of the CPU register contents, along with an
unassembled assembly language instruction,
followed by the MTR-100 hand prompt. If not,
you may have installed the switch incorrectly.

5. Type the {G} monitor command. The word ‘Go’
should be displayed on the screen. Now hit the
{RETURN} key, and you should be back to the DOS
prompt.

6. If you have made it this far, you can rest
assured that your Z-100 is operating correctly,
the new MTR-100 ROM is correctly installed, and
the SCSI/EEPROM board is correctly installed.

7. Put the EEPROM Utilities Disk (your copy) in
drive A. Run the EEPTEST program. If the test
finishes successfully, your EEPROM device is
working correctly.

Note: DO NOT run the EEPTEST after you have
programmed the EEPROM device, since the test
ERASES it!

8. Put the LLSCSI Utilities Disk (your copy) in
drive A. Run the LLINFO program. Several screens
full of data will scroll by very quickly. If the
program finishes without crashing or issuing an
error message, your SCSI host adaptor is working
correctly and is able to communicate with the
SCSI drive. If you do get an error message, or
the system hangs, check your SCSI hard drive
installation. Make sure the 50-pin cable is

3



connected properly, the drive has power, and
the proper unit number is selected.

9. If you have passed all of these tests, your
system is fully operational, and you are ready
to continue programming the EEPROM device, and
installing the SCSI software.

The Bootable EEPROM Device

Description:

The Bootable EEPROM portion of the SCSI/EEPROM
Board was built around the AM28F020 flash pro-
grammable 256Kb EEPROM chip. It was organized as
a non-volatile READ-only memory disk with 256
sectors of 1024 bytes each. A modified BIOS was
provided (v3.10 or later) which included support
for booting and reading the EEPROM device.

Once installed, the EEPROM device was assigned a
drive letter and it could be read just like any
disk drive (or a RAM disk). You could view the
directory of files, run programs from the EEPROM
device, or copy files and data FROM the EEPROM
device.

However, you could not write to the EEPROM
device in the normal fashion. It was considered
by DOS to be a WRITE-PROTECTED device; any
attempt to copy files to the EEPROM device would
result in a disk error message.

Files and programs were installed on the EEPROM
device by using special programing software
provided with the SCSI/EEPROM Board. Once
programmed, the EEPROM device could be bootable,
and the contents of its memory would not be lost
when power was turned off.

Programmers who would like to write their own
software to access the EEPROM device should see
the commented source files which were included
on the EEPROM Utilities Disk. Additional infor-
mation is also provided in the section titled
"Theory of Operation", later.

Once all the tests have been completed and you
are happy with the installation, if you wish to
set the computer to autoboot to the EEPROM
device, set the motherboard DIP switch S-101 to
the following settings:

  0    1    2    3    4    5    6    7
  On   On  Off   On  Off  Off  Off  Note

EEPROM Utilities Disk

This disk was provided with the LLSCSI board and
contained the programs needed to program the
AM28F020 flash EEPROM device. All code was
written by Paul F. Herman, and was released to
the public domain for distribution with the
SCSI/EEPROM Board. Full source code (in assembly
language and Microsoft 'C' v5.1) was included.

Disk contents (For ZDOS v3.10):

AUTOEXEC.BAT   For use on the EEPROM Setup Disk
CONFIGUR.COM   Modified version of CONFIGUR for
               use with the v3.10 BIOS.
READ    .ME    Last minute info; manual changes
IO64W   .SYS   4 BIOS files which support
IO64    .SYS   the bootable EEPROM device.
IO128W  .SYS
IO128   .SYS
FLAGS   .COM   A public domain program by
               William C. Parke which allowed
               changing the file attributes
               of a file.
CONFIG  .SYS   For use on the EEPROM Setup Disk.
EEMDISK .SYS   A RAM disk driver used during
               programming of the bootable
               EEPROM device.

Note: The EEMDISK was a 256Kb RAM disk which
must be installed and prepared before running
the PEEP.EXE program. The EEMDISK included a
boot record required for proper booting of the
EEPROM device after programming.

PEEP    .EXE   A utility to program the bootable
               EEPROM device. This utility
               looked for the EEMDISK RAM disk
               in memory, and then programmed
               the EEPROM device by copying all
               256Kb from the RAM disk to the
               EEPROM device.

REEP    .EXE   A utility which reads from the
               EEPROM device. This utility was
               not required for programming the
               EEPROM device, but was provided
               as a way to read the EEPROM
               device memory.
               Output of REEP.EXE was a disk
               file (specified on the command
               line) which was 256Kb bytes long.

WEEP    .EXE   A utility which wrote to the
               EEPROM device. This utility was
               not required for programming the
               EEPROM device, but was provided
               as an alternate way of writing
               to the EEPROM device. WEEP.EXE
               will write a 256Kb byte disk
               image file (specified on the
               command line) to the EEPROM
               device.

EEPTEST .EXE   A utility to test the EEPROM
               device. This utility erased, then
               programmed the EEPROM device with
               test data (ALL current data is
               DESTROYED). It then test read
               the EEPROM device using several
               methods.

SOURCE  <DIR>  This directory contained all the
               source code files for the EEPROM
               software utilities.

4



Programming the EEPROM Device - ZDOS v3.x

Note: There are several unique differences
between creating a ZDOS v3.x LLSCSI Setup Disk
and creating a ZDOS v4.x LLSCSI Setup Disk.
Also, I have NOT been able to get the EEPROM
Boot capability to work with a ZROM v4.3. Please
see the section “Programming the EEPROM Device -
ZDOS v4”, for a complete description of my
efforts, later.

First, you must create an EEPROM Setup Disk -
for use whenever you want to program the EEPROM
device. A directory named ‘EEP’ on this disk
contains all the files you may want on your
bootable EEPROM device.

1. Format a new BOOTABLE ZDOS v3.1 floppy disk
using the command;

    FORMAT A:/s/v

2. Create a directory named ‘EEP’ on the EEPROM
Setup Disk. This can be done with the command;

    MD A:\EEP

3. Copy the following files from the EEPROM
Utilities Disk to the ROOT directory of the
EEPROM Setup Disk;

    EEMDISK.SYS
    CONFIG.SYS
    AUTOEXEC.BAT
    PEEP.EXE

4. Copy the appropriate BIOS (IO.SYS) file from
the EEPROM Utilities Disk into the ‘EEP’ direc-
tory of the EEPROM Setup Disk. There are four
different BIOS files from which you can choose,
depending on your desired system configuration:

  IO64W.SYS   BIOS supported SCSI partitions up
              to 64Mb. Included support for
              Z-217 hard drives E thru H.
  IO64.SYS    BIOS supported SCSI partitions up
              to 64Mb. Did NOT include Z-217
              support.
  IO128W.SYS  Supported SCSI partitions up to
              128Mb. Included support for Z-217
              hard drives E thru H.
  IO128.SYS   Supported SCSI partitions up to
              128Mb. Did NOT include Z-217
              support.

Note: Do NOT use the 128Mb BIOS unless you must
have partitions this large. The cluster sizes
used for these large partitions is very wasteful
of disk space. Even larger partitions (up to
512Mb) are possible by changing and reassembling
the BIOS.

Note: Later versions of IO.SYS were distributed
with later versions of ZDOS, up to ZDOS v4.06.
Please contact me for a copy of the latest
LLSCSI distribution software.

Note: Using a BIOS without the Z-217 support
will save about 1.5Kb of memory. It will also
allow use of the drive letters E through H for
the EEPROM device and SCSI partitions.

Note: When you copy the appropriate BIOS file to
the EEPROM Setup Disk, rename it to ‘IO.SYS’.
It is important that IO.SYS be the FIRST file
copied to the ‘EEP’ directory.

5. Make a copy of your ZDOS v3.1 distribution
disk #1. This copy should NOT BE write-
protected.

6. Use the FLAGS.COM program provided on the
EEPROM Utilities Disk to remove all flags from
the MSDOS.SYS file on the copy of your ZDOS
distribution disk #1. This can be done by
issuing the command;

    FLAGS A:MSDOS.SYS /

This step is necessary because the MSDOS.SYS
file is normally a hidden system file and cannot
be viewed or copied. Removing the ‘hidden’ flag
from this file allows you to copy it from your
EEPROM Setup Disk.

7. Copy the MSDOS.SYS file from the ZDOS disk to
the ‘EEP’ directory of your EEPROM Setup Disk.
This should be the SECOND file in the directory.

8. Copy the COMMAND.COM file from the MS-DOS
disk to the ‘EEP’ directory of your EEPROM Setup
Disk. It should be the THIRD file in the
directory.

9. Run the command DIR on the \EEP directory.
You should now have three files in the ‘EEP’
directory on your EEPROM Setup Disk... IO.SYS,
MSDOS.SYS, and COMMAND.COM. They MUST be in that
order! If not, go back and start over.

10. Technically speaking, these three files are
all that you will need to make the EEPROM device
bootable. If you like, you may proceed with the
programming procedure to see how it works, and
then add more files to your bootable EEPROM
device at a later time. Sooner or later, you
will almost certainly want to include the
following files on your bootable EEPROM device;

    AUTOEXEC.BAT  - Specifies automatic
                    startup procedure
    CONFIG.SYS    - Specifies device drivers
                    to load, etc.

You may also want to include the device drivers
you plan to install at boot up time. These may
include a driver for the SCSI device, a floppy
device driver, an ANSI device driver, etc. You
may also include utilities which are needed by
the AUTOEXEC or CONFIG files. For instance,
memory resident utilities that you load at boot
time.

You may add as many files as you like to your
bootable EEPROM device, with the following
limits:

  -  Maximum 64 directory entries (including
     IO.SYS and MSDOS.SYS)
  -  Maximum 256Kb of files (including
     boot record and system files)

5



11. Before using the EEPROM Setup Disk to
program the EEPROM device, you may want to
configure the IO.SYS file using the MS-DOS
CONFIGUR.COM program. To do this, change to the
‘EEP’ directory, using the following command;

    CD \EEP

Now invoke the CONFIGUR.COM program.

Note: If you attempt to use Zenith’s original
CONFIGUR.COM Program, you may encounter two
problems:

  -  It may complain that this is the wrong BIOS
     version. A new version of CONFIGUR.COM is
     included with each new ZDOS release.
     Do NOT mix versions of these programs.

  -  The IO.SYS file must ALWAYS be located as
     one of the three systems files; IO.SYS,
     MSDOS.SYS, and COMMAND.COM, located first
     and in that order in the ROOT directory.

Therefore, if you need to configure your new
BIOS, copy the appropriate IO.SYS file into the
ROOT directory, run CONFIGUR.COM, then place it
in the EEP directory of the EEPROM Setup Disk.

Finally, the AUTOEXEC.BAT file on the distribu-
tion disk ran and programmed the EEPROM each
time the disk was booted. The AUTOEXEC.BAT file
contained the lines:

   COPY EEP I:
   PEEP

Rather, you may wish to rename this file to
EPROM_PG.BAT, so you can have more control,
allow changes to the \EEP directory, and make
changes to the EEPROM less automatic. Remember,
some file changes will require a fresh reboot
before reprogramming the EEPROM. 

Using the EEPROM Setup Disk to Program the
EEPROM Device

12. Now re-boot your Z-100 from the EEPROM Setup
Floppy Disk. Run the EPROM_PG.BAT file to
program the EEPROM device:

  -  The EEMDISK 256Kb RAM disk is installed
     when the EEPROM Setup Disk is booted.
  -  All files are copied from the ‘EEP’
     directory to the RAM Disk.
  -  The PEEP.EXE program is used to program
     the EEPROM device by writing the memory
     image of the RAM disk into the EEPROM
     device.

13. This completes the EEPROM programming
procedure. Put your EEPROM Setup Disk away as
a backup, in case you need to reprogram the
EEPROM device in the future.

Whenever you need to reprogram your EEPROM
device, simply modify the files in the ‘EEP’
directory of the EEPROM Setup Disk, if needed,
then reboot the EEPROM Setup Disk and run
EPROM_PG.BAT.

Booting from the EEPROM Device

Now you should be able to boot from the EEPROM
device. This can be done by pressing {B}oot {F4} 
and {RETURN} at the hand prompt.

If you wish to make the EEPROM device the
default boot device, set the motherboard S101
switch to:

  0    1    2    3    4    5    6    7
  On   On  Off  Off  Off  Off  Off  Note

Note: If you would like your Z-100 to boot
automatically when you turn ON the power or
do a {Ctrl}-{RESET}, put S-101 section 3 to
the ON position.

Special Note: The Am28F flash EEPROM devices
used in the bootable EEPROM device may be
reprogrammed up to 10,000 times. This should be
ample to allow you to change your boot files any
time you like, as system requirements change.

The SCSI Host Adaptor

The SCSI Host Adaptor portion of the LifeLine
SCSI/EEPROM Board was designed around the NCR-
5380 SCSI chip. It provided an industry-standard
interface to devices which include an imbedded
SCSI controller.

Software (LLSCSI Device Driver and Utilities)
was provided to support fixed and removable
media SCSI hard disks, such as Seagate, Rodime,
and Quantum SCSI hard drives and SyQuest remov-
able cartridge SCSI hard drive. Hard drives from
other manufacturers may also work.

The LLSCSI software supports drives with capa-
cities up to 512 megabytes. Your SCSI drive may
have from one to 16 partitions. Each partition
may be up to 512Mb in size, although partitions
larger than 128Mb are considered non-standard,
and require the BIOS to be changed and reas-
sembled.

Please see the section, “LLSCSI DEVICE DRIVER &
UTILITIES”, later, for the procedures to prepare
the SCSI drive of your choice for use.

6



The NMI Breakout Switch

The breakout switch portion of the LifeLine
SCSI/EEPROM Board is a tool for programmers.
It allows you to break out of any executing
program, perform various debugging chores, and
then continue execution. The switch works by
generating a non-maskable interrupt (NMI) on the
S-100 bus.

In order to use the breakout switch for its
intended purpose, you need special software to
support it (a non-maskable interrupt routine, to
be specific). The MTR-100 Monitor ROM v3.1 and
later includes debugging capability which
utilizes the NMI breakout switch. I have added
an article regarding the use of a Breakout
Switch on the “LifeLine Website” with details
about how the switch was used with the ROM.

Use of the breakout switch was not recommended
unless you were a programmer who understood
assembly language programming. If you do not
fall into this category, you may not want to
install the breakout switch.

IMPORTANT: If you do not install the breakout
switch, a shorting jumper must be placed over
the two pins of J2 nearest the center of the
board. Otherwise, your Z-100 may fail to operate
correctly.

Programming the EEPROM Device - ZDOS v4.x

Note: As I mentioned earlier, there are several
unique differences between creating a ZDOS v3.x
LLSCSI Setup Disk and a ZDOS v4.x version.

Note: I have NOT been able to get the EEPROM
Boot capability to work with a ZROM v4.3.
Further, if you were hoping to use ZDOS v4.06,
it requires ZROM v4.3 to work. So that pretty
much puts the kibosh on using the newest ZDOS.

Ever hopeful, I will briefly list the procedures
for creating the ZDOS v4.06 LLSCSI Setup Disk,
then explain the testing that I went through in
the hope that one of you may have the solution.

If I hear of a solution from someone, I will
certainly pass it on with an update here.  

As before, to create an EEPROM Setup Disk to
reprogram the EEPROM device, you must create a
directory named ‘EEP’ on this Setup disk that
contains all the files you may want on your
bootable EEPROM device. Briefly, you must:

1. Boot to ZDOS v4.06, from a floppy or the hard
drive, and FORMAT a new BOOTABLE ZDOS v4.06
floppy disk containing the ZDOS v4.06 versions
of IO.SYS, MSDOS.SYS, and COMMAND.COM. Use the
command;

    FORMAT A:/s/v

2. Run the DRIVECFG.COM utility on drive A: to
create a new EEPROM drive. I set my drive con-
figuration to include 4 floppy drives, A:-D:,
four MFM hard drives, E:-H:, an imaginary drive
I: for drive A:, and select J: to be the EEPROM
device.

When you press drive letter, J:, the utility
will present a list of drive choices. If you
press {F11} for an EPROM device, the computer
displays:

   “Select (S)CSI or (I)DE Controller Card
   [CR = SCSI]... _”

Press {RETURN} or {S}{RETURN} for the SCSI
controller.

Save and Exit the program. Your IO.SYS file is
now ready for use.

3. Create a directory named ‘EEP’ on the EEPROM
Setup Disk. This can be done with the command;

    MD A:\EEP

4. Copy the IO.SYS file you just modified from
the ROOT directory into the ‘EEP’ directory of
the EEPROM Setup Disk. This must be FIRST file
in the directory.

5. Copy the MSDOS.SYS file from the Root direc-
tory to the ‘EEP’ directory of your EEPROM Setup
Disk. This must be the SECOND file.

6. Copy the COMMAND.COM file from the Root
directory to the ‘EEP’ directory of your EEPROM
Setup Disk. It must be the THIRD file.

7. Run the command DIR on the \EEP directory.
You should now have three files in the directory
- IO.SYS, MSDOS.SYS, and COMMAND.COM. They MUST
be in that order! If not, go back and start
over.

8. Copy the following files from the EEPROM
Utilities Disk to the ROOT directory of the
EEPROM Setup Disk:

7



    EEMDISK.SYS
    CONFIG.SYS
    AUTOEXEC.BAT
    PEEP.EXE

9. Rename AUTOEXEC.BAT to EPROM_PG.BAT, as I
mentioned earlier. You must also modify the
contents to change the drive letter to reflect
whatever drive letter you chose for programming
the EEPROM. On mine, I had to change the drive
letter to ‘K:’ for programming my EEPROM, so my
EPROM_PG.BAT file contains:

   COPY EEP K:
   PEEP

10. In addition to your usual files and buffers
lines, CONFIG.SYS in the Root directory should
contain the lines;
   DEVICE=EEMDISK.SYS
   DEVICE=LLSCSI.SYS

11. Copy LLSCSI.SYS and the CONFIG.SYS file to
the \EEP directory as LLSCSI.SYS must be run
when the EEPROM boots, then delete the “DEVICE=
EEMDISK.SYS” line from this copy of CONFIG.SYS
in the \EEP directory. It will not be needed.
 
12. You may also want to include other programs,
ZDIR.COM, a clock routine like ZCLK.COM, or
maybe greeting routines or screens, such as my
HELLO.SCN, that would run at boot time.

You may add as many files as you like to your
bootable EEPROM device, with the following
limits:

  -  Maximum 64 directory entries (including
     IO.SYS and MSDOS.SYS)
  -  Maximum 256Kb of files (including
     boot record and system files)

After creating both DOS versions, 3 & 4, of my
LLSCSI Setup Disks, I was ready for testing...

ZROM v4.3 FAILS!!

OK, I have done everything that I can think of,
but no matter what I try, I can NOT get the
EEPROM to boot while the ZROM v4.3 is installed!

Everything works great with the older versions,
ZROM v3.2 and v4.24. The EEPROM boots great, it
comes up with my opening graphics screens cor-
rectly, the SCSI drive partitions are all found
and all disk drive operations are flawless.

The stage is set...
As I needed to check out this LifeLine SCSI Host
Adaptor for this article, I chose the existing
hardware, running with the ZROM v4.3 and ZDOS
v4.06 on a new motherboard running first at
9.3MHz, but then slowed to 5.3MHz after the
unexpected failures.

I was using a SyQuest SQ555 44Mb SCSI cartridge
hard drive which had been fully tested on this
test bed computer while using the CDR-317 SCSI
Controller. These tests are described in a
separate article available on the “Z-100
LifeLine” website.

Before I even began, I wanted to ensure that the
setup worked. So, I ran the EEPROM test utility,
EEPTEST.COM, before doing anything else;

   A:\>EEPTEST {CR}

The computer responded with:

   “EEPTEST v1.11 Test EEProm Memory
    (C)Copyright 1991 by Paul F. Herman Inc.”
   IF YOU CONTINUE, YOUR EEPROM DISK WILL BE
   ERASED! Are you sure you want to continue
   (Y or N)?” Y

   “Erasing EEPROM disk ... This will take a
    few seconds ... Okay.”
   “Programming EEPROM ... Okay.”
   “Reading EEPROM (Hi-Lo test) ... Okay.”
   “Reading EEPROM (Sequential test) ... Okay.”
   “A:\>”

So, this showed the EEPROM was working great.

The new LLSCSI SETUP Disk with DOS v4.06 must be
rebooted to make sure the new IO.SYS was working
and configured the computer for programming the
EEPROM. It showed drive J: was the EEPROM on the
SCSI controller and drive K: was set for pro-
gramming the EEPROM, specifically:

   “J: EEPROM on SCSI LifeLine Board  p”
   “K: 256K EEMDISK (EEPROM programming)”

   “MTR ROM v4.3  768K  RAM 64K COLOR Video
      8088    9.3446 MHz CPU Speed”

   “Using default CONFIG.SYS optn.”
     “DSKPAK SCSI Device Driver Version 1.00”
     “Copyright (C)1991, William E. Flanagin,”
     “Licensed for Sale by Paul F. Herman Inc.”

“All Rights Reserved”

If a memory cartridge was installed in the
SyQuest SQ555 drive, the LLSCSI.SYS driver would
be installed. Otherwise, you get the message;

   “No Drives Found Configured ERROR”
   “Driver NOT Installed Due To Prior ERROR”

NOTE: I experienced NO problems with the SyQuest
SQ555 cartridge drive at any time. It worked
flawlessly with any ZROM & ZDOS combination. So
I will not be referencing the driver any further
in this discussion. All difficulties were with
recognizing and reading the EEPROM.

I programmed the EEPROM using the command:

   EEPROM_PG.BAT

which also worked flawlessly, and confirmed the
files were indeed on the EEPROM by listing the
drive directory using the command;

   ZDIR J:/a

I would next complete a Warm Boot, using the
key combination {CTRL}-{RESET}, and would try to
boot to the EEPROM with the command;

8



   {B}oot {F4}

The computer would display:

   “Input BOOT string <CR>f4”
   “Booting Primary EEPROM Unit 0”
   “(C)1992 Z-100 LifeLine v1.15,
     Booting EEPROM Device ...”

And then stall. If I press the Breakout Switch,
the computer continues with:

   “No System”
   “ AX   BX   CX   DX   SP   BP   SI   DI
   “07FF 002E 0000 F808 0200 0000 0517 BC50
     DS   SS   ES      ODITSZ A P C”
    1400 1FA0 E000 1111000001000110”

   “1400:04F1 EBFE     JMP 04F1”

I will not bother listing the code here, but I
can make it available, if anyone is interested.
However, the jump is intentional, it is not an
error. The code is looking for the File FAT
(File Allocation Table) on the EEPROM and can
not find it, so assumes there is no system,
reports that fact, then does an endless loop
until someone resets the computer.

According to the source code of EEMDISK.ASM,
several memory SEGments are used with the
program:

   ROMDATA begins at       ORG 0000:03FE
   BIOS begins at          ORG 0040:0000
   BOOTRUN or LOADER is at ORG 1400:0400

If these SEGments are working properly, each
show the location of the File FAT. Let me
summarize what is found where:

   SEGment: ZROM v4.24   ZROM v4.3
   0000:042B EEMDISK   Yes (ok)
   0000:05B6 (C)1992 Boot Msg   Yes (ok)
   0000:0C00 File FAT   NO!

   0040:002B EEMDISK   Yes (ok)
   0040:01B6 (C)1992 Boot Msg   Yes (ok)
   0040:0800 File FAT   NO!

   1400:042B EEMDISK   Yes (ok)
   1400:05B6 (C)1992 Boot Msg   Yes (ok)
   1400:0C00 File FAT   NO!

As I understand the code, the BOOTRUN or BOOT
LOADER from the last part of EEMDISK.SYS is
loaded into memory SEGment 1400 from the
contents of the EEPROM in the following order:

   - The portion of the EEMDISK.SYS device
driver that creates and runs the Boot Loader is
loaded first into the memory at SEGment
1400:0400. This contains the applicable messages
to be displayed on the screen while booting.
   - The “PC” boot code is entered next.
   - The final part is the File FAT.

If the File Fat can not be found, then there is
no system, the BOOTRUN or LOADER (SEG 1400) is
not created, and the boot process halts.

As I ran into difficulty, I tried slowing to
5MHz, then eventually tried the earlier ZROM
v4.24 and ZDOS v3.10, looking for a working
system. After all, something must have worked
for the developers, or the system would have
never made it to distribution! Remember, this
LLSCSI Controller was available long before the
IDE controller, ZROM v4.3 and ZDOS v4.06 were
developed.

Anyway, if the EEPROM was programmed using ZDOS
v4.06 with ZROM v4.3, but I replaced the ROM
with ZROM v4.24, the EEPROM would attempt to
boot, would display the v4.06 opening screen
showing the drive configuration table, but would
fail, after displaying the drive table with;

   (Drive Table Listing)
   “I: Imaginary Drive mapped to A:”
   “J: EEPROM on SCSI LifeLine Board p”

And below the table;
   “** Initializing Motherboard Parity **”
   “Version mismatch between BIOS and system
      ROM”
   (Hand prompt)

So, with the only difference being the ROM was
now ZROM v4.24, the File FAT must have been
found on the EEPROM and the EEPROM attempted to
boot, but was stopped because of the BIOS & ZROM
version mismatch!

I had to floppy boot to the ZDOS v3.10 EEPROM
Setup Disk and reprogram the EEPROM. Then I
found that the system worked great using ZROM
v4.24 and ZDOS v3.10. The correct, working
bootup using EEMDISK.SYS v1.11 goes like this:

   “{B}OOT {f4}”
   “BIOS version 3.10”
   “Drives E: - D: floppies on the Z207”
   “Drives E: - H: hard disk partitions
      on the Z217”
   “Drive I: is the ROM drive”
   “DskPak SCSI Device Driver version 1.00”
   “Copyright (c)1991, William E. Flanagin,”
   “Licensed for Sale by Paul F. Herman Inc.”
           “All Rights Reserved”

   “Number of logical drives configured 2”
   “Starting with logical drive J: through”
      Logical drive K: respectively”

   “Ms-DOS Version 3.10”
   “Copyright (c)1985, Zenith Data Systems
      Corporation”
   “I>ECHO OFF
   “Strike a key when ready . . .”

My graphics screen, HELLO.SCN is displayed fine.
The ZBE ZCLK Date & Time is displayed.

   “Strike a key when ready . . .”

ZDIR of the EEPROM root directory is displayed;
with the label ‘SCSI EEP.ROM’.

   “I:\>”

9



Note: The primary differences between v1.11 and
the later versions of EEMDISK.SYS, is that the
“PC” boot code was introduced with v1.13 and the
IDE capability was introduced with v1.15.

For EEMDISK v1.13, the screen display is:
   “{B}oot {F4}”
   “(C)1992 Z-100 LifeLine v1.13,
     Booting EEPROM Device . . .”

Then the rest is the same as for the version
1.11, beginning with “BIOS Version 3.10”.

And for EEMDISK v1.15, the screen display is:
   “{B}oot {F4}”
   “(C)1992 Z-100 LifeLine v1.15,
     Booting EEPROM Device . . .”

Then, again, the rest is the same as for the
previous versions.

In spite of the differences in EEMDISK.SYS
versions, the above test results were the same
on both ZROM v3.2 and ZROM v4.24.

Final Food for Thought...

As you can see from my selection of partition
names during the preparation of the SCSI
cartridge above, I am in the habit of making a
separate partition for each of the operating
systems that I may use with a hard drive, so I
created ZDOS3 (40%), ZDOS4 (50%) and CPM (10%).
However, these SCSI drives are different in that
they will NOT be bootable - the EEPROM does
that.

That creates several new considerations that I
did not worry about with my MFM hard drive
systems. IDE devices with the IDE Controller had
the same restrictions.

  *  The EEPROM can only be programmed to boot
one operating system! It has to be reprogrammed
to boot to another OS.

  *  And speaking about my CP/M partition, is it
even possible to program the EEPROM device to
boot CP/M? While CP/M does not use a directory
structure that we use on our Setup Disk, would
it be possible to load the CP/M files into the
DOS \EEP directory, perhaps using a READCPM
utility, then boot to the Setup disk in DOS to
load the \EEP data into the EEPROM? The EEPROM
certainly would not care what the operating
system was. Data is just 00's and 11's right?

  *  Then, there is the SCSI drive itself. Like
the EEPROM and any other storage devices, such
as an MFM drive, it does not care what operating
system was in use? It just stores data. Has one
of you geniuses already thought of how this
could be accomplished? 

  *  While programming the EEPROM is easy and a
separate setup disk could easily reprogram the
EEPROM for different operating systems, it would
still be confusing and a process to be avoided.
You may as well just keep a separate computer
for each operating system with which to work!

  *  The LLSCSI device driver detects all three
partitions and creates 3 drives available for
use by the operating system that was booted. It
does not care if one was for CPM. Intermixing
files would be a real problem, especially
between ZDOS3 and ZDOS4!

  *  At 42Mb, you will need to figure out how
you want to divide the partitions into more
manageable sizes; perhaps by use - Spreadsheets,
Word Processing, Database, Taxes, etc., or
directory listing programs will show PAGES of
files with every use. And I have a pair of 88Mb
cartridges!

Theory of Operation

The LifeLine SCSI/EEPROM Board serves three
functions; a SCSI host adaptor, a bootable in-
circuit programmable EEPROM, and a breakout
switch.

First, a description of the overhead. U9 and U10
are tri-state drivers which provide an on-board
bi-directional data bus. The on-board bus
interfaces to the S-100 data-in and data-out
lines. The bi-directional data bus serves both
the EEPROM (U1) and the SCSI host adaptor (U4),
plus the sector latch (U2), which is discussed
below.

U2 acts as a sector latch, allowing any of the
EEPROM's 256K sectors to be accessed. U6
(CTRPAL) is a programmable logic array which
synthesizes the proper timing and enable
signals. U8 (ADRPAL) is another PAL which, along
with U7, provides port address decoding. U3 is a
sector offset address counter which allows
successive bytes to be read from the sectors of
the EEPROM. And finally, U5 provides debouncing
for the non-maskable interrupt switch.

Communications with the SCSI/EEPROM board is
done with I/O ports. The SCSI host adaptor uses
ports 0C0h through 0C7h to read or write its
registers, and port 0C8h for data in/out. The
EEPROM uses port 0CEh for reading data or
writing to the sector latch, and port 0CFh for
writing data or incrementing its address
counters.

These port assignments were carefully chosen to
avoid conflicts. Should there be a conflict, the
port addresses could be changed by reprogramming
the ADRPAL and rewriting the software. It might
be easier to resolve the other party to a
conflict.

The EEPROM is organized like a pseudo disk, into
256 sectors of 1024 bytes each, for an overall
total of 256Kb bytes. A sector is read by first
loading the sector latch (port 0CEh) with the
sector number, and then reading port 0CEh 1024
consecutive times. After each read from port
0CEh, the sector offset address counter (U3)
must be incremented by reading from port 0CFh.
The data read from port 0CFh is meaningless...
the read is only done to increment the counter.
The sector offset address counter is reset by a
write to the sector latch.

10



Writing to the EEPROM (programming) can also be
done without removing the EEPROM chip from the
board. This is made possible by the flash
programmable technology of the Am28F020 chip.
However, programming of the EEPROM involves
critical timing operations which are beyond the
scope of this discussion. See the source code
for the EEPROM Utilities for an example of how
the EEPROM is programmed.

CTRPAL Equations

This PAL creates the control signals to read and
write to the EEPROM and SCSI host adaptor chip.
It also creates the signal to increment the
sector offset address counter. This device may
be a PAL-16L8 or GAL-G16V8.

INPUTS:
  Pin 1   = pWR    CPU write strobe (active low)
  Pin 2   = pDBIN  CPU read strobe (high)
  Pin 3   = A0     CPU address
  Pin 4   = C0X    from ADRPAL
  Pin 5   = C8     from ADRPAL
  Pin 6   = NCLR   from Pin 15 (/WEN0)
  Pin 7   = CEF    from ADRPAL
  Pin 8   = sOUT   CPU OUT to PORT signal (high)
  Pin 9   = sINP   CPU IN from PORT signal (high)

OUTPUTS:
  Pin 12  = INCR   signal to increment sector
                   offset address counter
  Pin 13  = REN    EEPROM read strobe (low)
  Pin 14  = WEN1   EEPROM write strobe (low)
  Pin 15  = WEN0   Address latch write strobe (low)
  Pin 16  = PREN   EEPROM enable (low)
  Pin 17  = CLR    Sector counter reset (high)
  Pin 18  = IOR    SCSI read strobe
  Pin 19  = IOW    SCSI write strobe

Logic Equations:
  /IOW    = /pWR * /C0X * sOUT + /pWR * /C8 * sOUT
  /IOR    = pDBIN * /C0X * sINP + pDBIN * /C8 * sINP
  /CLR    = NCLR
  /PREN   = /CEF * /A0 * sINP + /CEF * A0 * sOUT
  /WEN0   = /CEF * /A0 * /pWR * sOUT
  /WEN1   = /CEF * A0 * /pWR * sOUT
  /REN    = /CEF * /A0 * pDBIN * sINP
  /INCR   = /CEF * A0 * sINP * pDBIN

Note: Signals preceded by a forward slash
represent low signals.

ADRPAL Equations

This PAL deciphers board addresses to create
enable signals for CTRPAL, the SCSI host adaptor
chip, and the data bus multiplex control. This
device may be a PAL-16L8 or GAL-G16V8.

INPUTS:
  Pin 1   = A0     System address bus
  Pin 2   = A5     System address bus
  Pin 3   = A1     System address bus
  Pin 4   = A4     System address bus
  Pin 5   = A2     System address bus
  Pin 6   = A3     System address bus
  Pin 7   = A6     System address bus
  Pin 8   = A7     System address bus
  Pin 9   = sOUT   I/O out indicator
  Pin 11  = sINP   I/O in indicator

OUTPUTS:
  Pin 12  = RDEN   Data bus read strobe (active low)
  Pin 13  = WREN   Data bus write strobe (low)
  Pin 14  = SCICS  Select SCSI control registers
  Pin 15  = DACK   Select SCSI data registers
  Pin 16  = C8     Port 0C8h register
  Pin 17  = C0X    Ports 0C0h through 0C7h registers
  Pin 18  = CEF    Address 0CEh or 0CFh (low)

Logic Equations:
  /CEF    = A7 * A6 * /A5 * /A4 * A3 * A2 * A1
  /C0X    = A7 * A6 * /A5 * /A4 * /A3
  /C8     = A7 * A6 * /A5 * /A4 * A3 * /A2 * /A1 * /A0
  /DACK   = /C8 * sOUT + /C8 * sINP
  /SCICS  = /C0X * sOUT + /C0X * sINP
  /WREN   = /CEF * sOUT + /C0X * sOUT + /C8 * sOUT
  /RDEN   = /CEF * /A0 * sINP+/C0X * sINP+/C8 * sINP

Note: The signal /DACK had a pencil change in my
copy of the written manual that appeared to
change the equation to +/C8 * sOUT + A0. We need
to check this out.

Note: Signals preceded by a forward slash
represent low signals.

Engineering Notes:

Heat Dissipation of VR1 (5 volt regulator)

Regulated 5 volt power to the LifeLine SCSI
/EEPROM Board is provided by voltage regulator
VR1. Typically, the input voltage to this regu-
lator is about 8 to 8.5 volts, and must be a
minimum of 7 volts. The current requirements of
the board are about 0.5 amp.

It is normal for VR1 to be hot to the touch.
However, it has been found that some Z-100 power
supplies provide as much as 11 volts input to
this regulator, which may cause it to run hotter
than normal. Even at 11 volts input, VR1 is
still operating within its design criteria.
However, the increased temperature may result
in decreased life.

If VR1 gets hot enough to burn your finger, you
may want to consider making a modification to
the board. Only attempt this modification if
you have a voltmeter, and are experienced in
electronic repairs.

Measure the voltage at the input to VR1. If the
voltage is above 9 volts, insert a 2.2 ohm, 2
watt resistor between the input and the regula-
tor. This can be done by cutting the input line
trace (along the left side of the board), and
soldering the resistor in the holes which are
provided. if the input voltage measures greater
than 10 volts, you may want to consider adding
two 2.2 ohm resistors in series with each other.

11



   
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Parts List:

Qty: Part #: Description:
Digikey Part #:

 1 Custom S-100 printed circuit board
 1 U1 Am28F020-150 flash programmable EEPROM
 1 U4 Am5380-PC SCSI host adaptor chip
 1 U3 74HCT4040 12 bit binary counter CD74HCT4040E
 1 U2 74HCT374 octal D tri-state flip-flop CD74HCT374E
 1 U5 74LS38 quad 2 in NAND buffer DM74LS38N
 1 U6 Custom CTRPAL PAL16L8-15CN
 1 U7 74F244 quad buffer/line driver 74F244PC
 1 U8 Custom ADRPAL PAL16L8-15CN
 1 U9 74LS244 tri-state octal line driver DM74LS244N
 1 U10 74LS244 tri-state octal line driver DM74LS244N
 1 VR1 7805 5V, 1.5A voltage regulator LM340T-5
 1 VR2 7812 12V, 1.5A voltage regulator LM340T-12
 1 RZ1 2.7K ohm, 10-pin SIP resistor network 770-101-R2.7K
 3 RZ2-RZ4 220/330 ohm, 8-pin SIP resistor network 770-85-R220/330
 5 6.8uF, 25v tantalum capacitor P2048
 11 0.1uF, 25v capacitor P4887
 1 J1 50-pin SCSI connector CHR50G-ND
 1 Lock ejector set CLKS01-ND
 1 J2 3 contact header WM4301
 1 3 contact terminal housing WM2001
 1 Shorting jumper 929950-00-ND
 1 SPDT momentary contact switch
 1 Heat sink for TO-220
 1 14-pin DIP socket A9314
 1 16-pin DIP socket A9316
 1 20-pin DIP socket A9320
 1 32-pin DIP socket ED3632
 1 40-pin DIP socket A9340
 2 6-32 x 1/4 machine screw and hex nut H154, H220
 2 #6 lock washers H240
 2 2-56 x 5/16 machine screw and hex nut H155, H212

12

13

SYMBOLS CROSS REFERENCE

There are 26 symbols used in the schematics to
show signal connections between pages, or, in
some cases, from point to point on the same
page. Because of the complexity of so many
symbols, the following table may help.

 Signal Pages
Symbol Name Active used on
 A WEN0 LO 1
 B WEN1,WE LO 1, 2
 C CEF LO 1, 2
 D D0-D7 Data 1, 2
 E C0X LO 1
 F C8 LO 1, 2
 G IOW LO 1, 2
 H IOR LO 1, 2
 I IRQ HI 1, 2
 J IRQ LO 1
 K DACK LO 2
 L A0 HI 1, 2
 M A1 HI 1, 2
 N A2 HI 1, 2

 Signal Pages
Symbol Name Active used on
 O SOUT HI 1, 2
 P SINP HI 1, 2
 Q INCR,CLK LO 1
 R RDEN LO 1, 2
 S SCICS,CS LO 2
 T REQ LO 2
 U REN,OE LO 1
 V PREN,CE LO 1
 W WREN LO 2
 X RESET LO 2
 Y NMI LO 1
 Z CLR HI 1

14

LLSCSI DEVICE DRIVER &
UTILITIES

Introduction

The LLSCSI Device Driver allows you to use SCSI
hard drives on a Z-100 computer which is equip-
ped with a SCSI host adaptor. The driver and
setup program allows you to use multiple drives,
each up to 512Mb capacity. Up to 16 partitions
may be established on each SCSI drive.

Partitions may be any size up to 512Mb, although
partitions larger than 64Mb will require a
modified Z-100 BIOS.

System Requirements:

In order to use the LLSCSI driver software and
utilities in this package, you will need the
following:

 - A Heath/Zenith Z-100 series computer
 - One of the following SCSI host adaptors;
 = LifeLine SCSI Host Adaptor/
 Bootable EEPROM Board
 = Lomas Data Products SCSI host adaptor
 - MS-DOS v3.1 (or later) operating system
 - Fixed or removable media hard drive with
 embedded SCSI controller. At the time
 this software was released (March 1992),
 drives from the following manufacturers
 were supported:
 = Conner SCSI drives
 = Seagate 'N' series SCSI drives
 = Quantum SCSI drives
 = Rodime SCSI drives
 = Syquest removable cartridge SCSI drive
 = Other untested SCSI drives may also

 work

LLSCSI Distribution Disk Contents

The LLSCSI Distribution Disk contained the
following files:

 LLSETUP .COM Program which preps,
 certifies, partitions, and
 formats the SCSI hard drive
 LLSCSI .SYS The SCSI device driver
 LLINFO .COM Program which displays
 information about the SCSI
 drive
 LLDUMP .EXE Program which displays
 absolute sector information
 from the SCSI drive
 LLDFLS .COM Program which displays SCSI
 drive sector defect list

Note: The LLSCSI software version for the Lomas
Data Products SCSI host adaptor had each file
name prefixed with ‘LDP’ instead of ‘LL’.

Setting Up the SCSI Hard Drive

The LLSETUP program is used to setup the SCSI
hard drive. This will be your first step when
installing a new SCSI drive. LLSETUP performs a
low-level format (PREP), certifies the disk
surface and updates the bad sector defect list,
allows you to partition the drive, and formats
the partitions for use with MS-DOS.

Note: If you are using a removable media SCSI
drive, the LLSETUP program activities must be
performed for EACH removable cartridge.

LLSETUP Menu Screen

When the LLSETUP program first begins, it takes
inventory of the SCSI bus to see what devices it
finds. Each SCSI device will have a unique
logical unit number assigned to it.

When you install your SCSI drive, you should set
the jumpers so that it is configured as logical
unit 0, 1, 2, 3, 4, or 5. Typically, your first
drive would be unit 0, the next drive would be
unit 1, and so forth. Logical unit 6 is reserved
for the SCSI host adaptor itself, and unit 7 is
reserved for a tape backup unit (not supported
by this LLSCSI driver).

As you can see in the above picture, the program
found my SyQuest SQ555 cartridge hard drive. The
program then lists the Main Menu, with five
choices. We will discuss each...

Select Current Drive to Process:

The first step is selecting the drive to pro-
cess. Just press {RETURN} to select.

15

Prep Drive / Low Level Format

All new drives must be prepped. If a drive
has previously been used in a PC compatible or
other computer system, it must still be prepped,
since the low level formatting performed by the
LLSETUP program is NOT the same as used by other
SCSI software or manufacturers.

Low level formatting will take a fair amount of
time - 4 or 5 minutes on my 44Mb cartridges. The
exact amount will depend on the size of your
hard drive. When the low level format operation
is complete, press {RETURN} to return to the
main menu.

Certify Drive / Map Out Defects:

This is an optional, but recommended step. The
certification process causes the entire disk to
be checked for defects, and if any are found,
they are added to the drive defect list. This
prevents them from being used.

Drive certification will be a time consuming
task. Here we are about an hour in and we are
checking logical block 35802 out of 86700 blocks
or about 41% in Pass 1.

Here Pass 1 is complete (~2.5 hrs) and Pass 2
has begun. For some reason, the percentage bar
does not work during this second pass.

When complete, press {RETURN} to return to the
main menu.

16

Partition Drive for System

You must establish at least one partition on
each SCSI hard disk. LLSETUP allows you to have
as many as 16 partitions, if you desire. Each
partition may be any size up to the entire
drive, but you should avoid unnecessarily large
partitions, since they may result in large
cluster sizes - very wasteful of disk space.

It is recommended that you keep partitions under
32Mb, if possible, for the most efficient disk
space utilization. If necessary, partitions up
to 64Mb may be used with a stock Z-100 BIOS.
Partitions larger than 64Mb will require a
modified BIOS.

Note: If you are using the LLSCSI/EEPROM Board,
BIOS versions are included which allow you to
use partitions up to 128Mb, without reassem-
bling the BIOS.

For each partition, you must provide a name and
the partition size. The display to the right and
left of the screen will show statistics for the
current partition, and for all partitions.

Format Partition for DOS:

The last step in setting up the SCSI hard drive
is formatting each partition for use with DOS.
Each partition must be formatted. This last step
is necessary in order for the LLSCSI driver to
recognize the partition.

The above picture shows the typical screen as it
is being formatted. It is repeated for the other
two partitions. When all the partitions are
completed, pressing {RETURN} takes you back to
the Main Menu, and selecting “Return to DOS”
takes you back to the DOS prompt.

17

Installing the LLSCSI Driver

The LLSCSI device driver is installed by adding
a line to the CONFIG.SYS file on your boot
device... like this;

 DEVICE=LLSCSI.SYS

If you do not want the device driver to be in
the root directory on the boot drive, the
complete path of the device driver may be given.
See your DOS manual for more details on the
syntax of the ‘DEVICE=’ command.

After adding the ‘DEVICE=’ command to your
CONFIG.SYS file, you must reboot in order for
the device driver to load.

During the bootup process, the LLSCSI.SYS driver
will take an inventory of all SCSI devices by
attempting to communicate with each logical unit
number. If valid data is not returned within a
predefined timeout period, it will give up, and
go on to try the next logical unit number. It
does this for each logical unit number on the
SCSI bus.

Since the LLSCSI.SYS driver polls the SCSI bus
whenever it is loaded, this means you can add or
remove new SCSI devices any time, without any
changes to the driver or software. Just make
sure you run LLSETUP on each new device when it
is first installed.

The /W Switch

It is possible that when you first turn the
computer on, the LLSCSI.SYS driver will exceed
its timeout limit before your SCSI drive spins
up to speed. If this happens, the driver will
not recognize the drive. This might particularly
be a problem if you are booting from the EEPROM
device of the SCSI/EEPROM Board, since this
device gets through the boot sequence very
quickly.

This problem may be corrected by simply RESETing
the computer after the drive is up to speed, and
letting the driver load again. Or, you may want
to set your Z-100 for a "manual" boot, and wait
a few seconds after power up to issue the boot
command.

If your drive consistently fails to come up to
speed within the timeout period, you may use the
‘/W’ (Wait) switch when loading the LLSCSI
driver. To use this ‘Wait’ switch, use a command
of the following form in CONFIG.SYS;

 DEVICE=LLSCSI.SYS /W:n

where ‘n’ is a delay constant which causes the
driver to wait before beginning to poll the SCSI
bus. Start with a low number and keep increasing
it until your SCSI drive is consistently recog-
nized during the power-up polling process.

The disadvantage of using the ‘/W’ switch is
that the driver will wait every time you reboot
- even if the drive is already up to speed. For
most new drives, a wait value of just a few

seconds should be satisfactory, and in many
cases, no wait period will be required at all.

One other suggestion... if your drive is just a
little too slow to come up to speed at power on,
you might try assigning it logical number 5,
instead of unit number 0. This will not increase
the amount of time it takes the driver to poll
the SCSI bus, but it will postpone polling of
your drive, since it is near the end of the
logical unit number list.

The /V Switch

The ‘/V’ (Verbose) switch causes the driver to
display a complete description of each SCSI
partition during the bootup process.

Improved LLSCSI.SYS

Subsequent work on the LLSCSI/EEPROM Board
resulted in three additional LLSCSI.xxx files
that were alternate forms of LLSCSI.SYS. They
were distributed with the DOS v4 distribution
packages for the Z-100. The new files were:

 LLSCSI.FRW = fast read/write
 LLSCSI.FR = fast read
 LLSCSI.SLO = non-accelerated read/writes

It was found that some drives worked better than
others. Experimentation is the only way to
determine if your drive will work with faster
commands. The problem is that if your drive
cannot accept the faster commands during a
write, data WILL BE LOST.

These files were provided with NO guarantees.
Most drives will work with LLSCSI.SLO or
LLSCSI.FR.

Additional Note: LLSCSI.FRW may not work
reliably at 10 MHz or faster.

Still later changes to LLSCSI.SYS included:

The New /U Switch

The new /U[:][xxx] switch is an Unconditional
Wait. Each ‘xxx’ is a 1/2 second wait. After the
wait period, processing continues checking for a
Wait Until Ready request. If no ‘xxx’ is given,
a value of 20(10 seconds) is used.

Additionally, if CLEAR_PU_WAIT is set to TRUE,
the unconditional wait is cancelled if the MTR-
ROM did not find a Power On Reset condition at
boot time. This is done since the unconditional
wait should only be necessary if we are allowing
the drives to spin up to speed.

The New /W Switch

The new /W[:][xxx] Switch is now Wait Until
Ready. Each of the 7 possible units are checked
with ‘Test Unit Ready’ command starting with
unit 7. The Wait is exited as soon as any drive
shows ready. A ‘Reset’ command is done between
each group of tests.

18

After ‘xxx’ groups of tests, if no unit becomes
ready, processing continues as if no Wait Until
Ready was requested.

If the compile time option WAIT4ALL_READY is set
to TRUE, the /W switch is modified to have the
format /W[:][xxx][-yyyyyyy].

The ‘xxx’ is still the wait count but ‘-yyyyyyy’
is a list of the physical drive numbers of the
drives to check for ready. If no drives are
given, the /W command reverts back to the func-
tions as described above. We do not exit the
check until the wait count runs out or all the
drives show ready.

This is useful if you have more than one drive
and they don't all show ready at the same time.
For example, a command line switch /W:45-015
will try a maximum of 45 times, exiting when
drives 0, 1, and 5 all have shown ready.

The New /T Switch

A compile time option now eliminates the /T(est)
switch to save both memory and disk space. If
enabled, the /T command line switch will gener-
ate screen messages and diagnostics on internal
errors.

New Multiple Drive Speed Selection

DMA_CNFG_DRIVES must be set to TRUE at compile
time. You may then pass to LLSCSI (on the
command line) the speed selection for READS and
WRITES for each drive. The syntax is as follows:

 /#:[R][W]

where:
 # is the physical drive #
 R indicates the desire for FAST READs
 W indicates the desire for FAST WRITEs.

The actual speed of the FAST option is
controlled by the compile time options in
SCIPARMS.ASM. If you do not select the FAST
option on the command line, then the speed is
the same as setting FULL_SEC_READS or FULL_
SEC_WRITES to FALSE at compile time.

For example, if drives 1 and 5 can not handle
the fastest V20 WRITES, set the following:

 /0:RW /1:R /5:R

In this case, choosing to compile with
V20_WRITES_1 set to TRUE will permit drive 0
to read/write at the fastest possible speed,
but drives 1 and 5 will only do FAST READs.

The New "PC" Master Boot Record

LLSCSI now checks for a "PC" Master Boot Record
in Physical Sector Zero, if it does not find the
old LLSETUP format. "Extended" partitions are
supported. The number of Sectors Per Track and
number of Heads can only be determined if at
least one of the partitions in the Master Boot

Record has both non-zero Cylinder and Head for
either the Starting or Ending location.

CONVERT.EXE is Now Required for Recompile

In order to save EEPROM disk space, the use of
CONVERT.EXE (same as BIOS) is now required after
a successful recompile.

The New Generic Input/Output Control

GIOCTL is now fully supported, enabling the use
of "PC" FORMAT.COM to format a partition.

Maximum Drives Supported

LLSCSI now supports a maximum of 25 logical
drives, but will not pass back to DOS an amount
greater than ‘Drive Z:’.

Smaller Size When DOS 4

A compile time option now disables version
independence to achieve a smaller disk and
memory size.

Use of BIOS Stack and Disk Buffer

To further save resident memory requirements,
LLSCSI has another compile time option that uses
the BIOS stack and/or BIOS disk buffer.

Removable Media Hot Swapping

An attempt has been made to support "Hot Swap-
ping" for removable media.

The compile time option REMOVEABLE_MEDIA must be
set to TRUE and the Boot Loader on the disks
must be "PC" compliant. Due to the lack of
‘removable media devices’, however, this has
not been checked out.

LLS_xxxx.Vxx

During continued experimentation, it was found
that for optimum performance, LLSCSI needed a
small change when compiling for DOS versions 2 &
3 and for different computer processing units
(CPUs).

This resulted in the following files:

 LLS_8088.V3
 LLS_8088.V3P
 LLS_8088.V4
 LLS_8088.V4P
 LLS_V20.V3
 LLS_V20.V3P
 LLS_V20.V4
 LLS_V20.V4P

The .V3? files are good for version 2 or 3 of
MSDOS. The .V4? files are for Z-DOS v4.

19

The .V?P files are compressed using PKLITE.

To try the newer files, rename your original
LLSCSI.SYS file to LLSCSI.ORG (for original) and
then copy the appropriate file you wish to try
to LLSCSI.SYS.

Other Utility Programs

LLINFO

This program displays information about the SCSI
drive. This information will only be of interest
to those familiar with the intricacies of the
SCSI world. It is included in the package mainly
for two reasons;

 - Running LLINFO is a quick way to see if
 your SCSI host adaptor and drive are
 operating correctly. LLINFO does not
 require the LLSCSI.SYS driver to be
 installed.

 - The information provided by LLINFO
 may be helpful in assisting you in
 supporting new SCSI drives or devices,
 and may aid in diagnosing problems.
 Output from LLINFO may be directed to
 the printer using the command;

 LLINFO>TEST.DAT

By default, LLINFO will provide information
about SCSI logical unit 0. If you wish to
display information for another logical unit
number, use the following syntax;

 LLINFO n

where 'n' is the unit number, from 0 to 5. The
number used for 'n' must be separated from the
LLINFO command by exactly one space.

LLDUMP

This program allows you to display absolute
sector information from the SCSI drive. It will
prompt you for the logical unit number you wish
to investigate.

LLDFLS

This program displays the SCSI drive sector
defect list. By default, it reports the defect
list for logical unit 0. To access other SCSI
units, use the following syntax;

 LLDFLS n

where 'n' is the unit number, from 0 to 5. The
number used for 'n' must be separated from the
LLDFLS command by exactly one space.

NOTE: All these changes were before my time and
as I could not afford nor needed a SCSI drive at
the time, I could not even be considered a
casual observer. So, while I tried to make sense
of these last few pages of information, I tried
to just gather and document the information as
best I could.

20

SCSI DMA Host Adaptor and
Bootable EEPROM Board

Source Information:

The following is based upon a paper by Robert F.
Hassard of Walnut Creek, CA, dated May 1, 1992,
and the development team's original SCSI Host
Adaptor/Bootable EEPROM Board distribution
documents.

Note: As I understand it, Robert was working on
another SCSI Host Adaptor that was to use a DMA
Controller. In fact, I have what appears to be
his prototype board for this upgrade. However, I
have NO other documents or correspondence that
shows what became of the project. If you know
anything that could shed some light on this
project, please contact me.

The source information for Robert Hassard's DMA
concept is from the following:

 - The H/Z-100 Tech Manuals and Schematics
 - The iAPX-88 Book supplied with the
 H/Z-100 Technical Manuals
 - NEC Electronics Data Book, pages 7-91 thru
 7-125, on the NEC uPD71071 DMA Controller
 - Advanced Micro Devices Flash Memory
 Products 1990 Data Book/Handbook
 - Advanced Micro Devices Personal Computer
 Products, pages 4-3 thru 4-30, on the
 Am5380 SCSI Controller
 - Various other documents on PALs & GALs,
 and other Integrated Circuits

Theory of Operation:

This is a rather complicated board, so it will
be discussed in four parts:

1) Data Bus Management
2) The EEPROM
3) The SCSI Interface
4) DMA Operations

DATA BUS MANAGEMENT:

Normally, the H/Z-100 has two data buses; the
Data In Bus to transfer data from memory or a
peripheral IN to the CPU, and the Data Out Bus
to transfer data from the CPU OUT to memory or
a peripheral.

But, on this board, both the Data In Bus and the
Data Out Bus are bi-directional. The reason for
that is that the DMA Controller takes the place
of the CPU and the only way that it can send
data to memory is on the Data Out Bus and the
only way it can receive Data from memory is on
the Data In Bus.

In addition, there is a third bi-directional
Data Bus on the board linking the various
components of the board together. This Bus
interfaces to the Data In and Data Out Buses
through a pair of 74HCT245 Tri-state Trans-
ceivers. (Note: the 74LS245 is NOT Tri-state,
but has a tri-state counterpart, the 74LS645.)

The DMA Controller has two states (or cycles);
Slave Mode and Master Mode.

When in the Slave Mode, the Data In and Data Out
Buses are normal.

When DMA is in the Master Mode, the direction
of those two buses is reversed. When one Trans-
ceiver is Enabled, the other is Disabled.

The Data Bus is enabled for writing by the
signal sWO*. It is enabled for reading by the
signals RDEN*, which is generated in the ADRPAL,
and MRD*, which is generated by the DMA Con-
troller. Both of these signals are Tri-state.

FLASH EEPROM:

The EEPROM is addressed as a Port because it is
used as a pseudo disk organized into 256 sectors
of 1024 bytes each. The EEPROM is addressed by a
latch which holds the sector number and by a
counter which counts up from 0 to 1023. The
Sector Latch is loaded by an OUT to Port 0CEh.
The latched sector is read by 1024 looped reads
from Port 0CEh.

The EEPROM is written to by sectors as above.
The sector number is latched in the same way,
using Port 0CEh. However, the writing is done in
loops of 1024 bytes each to Port 0CFh.

Each time the EEPROM is written to or read from,
the Address Counter must be incremented. This is
done by reading Port 0CFh. The data read in this
case is meaningless.

Automatic incrementing is NOT possible because
of the Write Algorithm used in programming the
EEPROM. The EEPROM Address Counter is reset by
the same signal that enables loading the Sector
Latch (OUT to 0CEh).

21

SCSI INTERFACE:

Because the SCSI data transfer to and from
memory is done by DMA, the only communication
with the Am5380 Interface is for programming
purposes. It is programmed using Ports 0C0h thru
0C7h. Otherwise, the DMA Controller controls the
Interface circuitry.

However, this function is important. Not only
are the Interface's Registers read to determine
status conditions, but writing to them is
essential for controlling the SCSI operations
and the Start of DMA operations.

DMA CONTROLLER:

The DMA controller is programmed using Ports
080h thru 08Fh. These Ports correspond to the
programming registers of the uPD71071 and all
may be byte written or byte read.

The interface with this DMA controller is fairly
simple. The 8-bit Data Bus uses the Transceivers
described above under Data Bus Management.

Address lines A7-A0 are connected directly to
the S-100 Bus.

Address lines A15-A8 are latched out of the data
bus.

Address lines A19-A16 are connected direct to
the S-100 Bus.

Address lines A23-A20 are NOT connected because
those lines are uni-directional out of the
H/Z-100 Main Board.

There is an open collector lines driver for dis-
abling the H/Z-100 buses during DMA operation. A
tri-state driver to assert the new status and
program signals to the H/Z-100 memory. And a
combination of logic in flip-flops and a PAL to
create the memory control signals during a DMA
operation.

There are two transfer modes available for use;
DEMAND, which matches the Am5380 SCSI Control-
ler's Normal Mode, and BLOCK, which matches the
5380's Block Mode.

In both of these Modes, data is transferred by
bytes. The DMA controller provides the control
signals to actuate the SCSI Host Adaptor and
Memory so that as data enters the Data Bus from
one, it is picked off by the other depending on
the programming instructions. This process
continues until the Address Counter reaches
Terminal Count, or the SCSI Host Adaptor issues
an Interrupt (IRQ) signal.

The speed of Data Transfer is controlled by a
READY signal generated by the SCSI Host Adaptor.
This signal is combined with the RDY signal
generated by the Refresh Wait circuitry so that
either may delay a transfer.

I hope that you enjoyed the history and
documentation of the first “Z-100 LifeLine”
project, the LLSCSI Controller Board.

If you have any questions or comments, please
email me at:

z100lifeline@swvagts.com

Cheers,

Steven W. Vagts

22

mailto:z100lifeline@swvagts.com

